精英家教網 > 高中數學 > 題目詳情

在底面為平行四邊形的四棱錐 P-ABCD 中,AB⊥AC,PA⊥平面 ABCD,且PA=PB,點 E 是 PD 的中點.

(Ⅰ)求證:AC⊥PB;

(Ⅱ)求證:PB//平面 AEC;

(Ⅲ)求二面角 E-AC-B 的大小.

(Ⅰ)∵PA⊥平面 ABCD,
∴AB 是 PB 在平面 ABCD 上的射影.

又∵AB⊥AC,AC平面ABCD,

∴AC⊥PB.

(Ⅱ)連接BD,與 AC 相交于 O,連接 EO.

∵ABCD 是平行四邊形,

∴O 是 BD 的中點

又 E 是 PD 的中點

∴EO∥PB.

又 PB平面 AEC,EO平面 AEC,

∴PB∥平面 AEC.

(Ⅲ)取 BC 中點 G,連接 OG,則點 G 的坐標為


EOG是二面角E-AC-B的平面角
 
 EOG=
二面角E-AC-B的大小為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點E是PD的中點.
(1)求證:PB∥平面AEC;
(2)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

在底面為平行四邊形的四棱錐V-ABCD中,
VE
=2
EC
,則三棱錐E-BCD與五面體VABED的體積之比為( 。
A、1:3B、1:4
C、1:5D、1:6

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在底面為平行四邊形的四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,AD=1,CD=2,∠DCB=60°.
(Ⅰ) 求證:平面A1BCD1⊥平面BDD1;
(Ⅱ)若二面角D1-BC-D的大小為45°,求直線CD與平面A1BCD1所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•湖北模擬)如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點E是PD的中點.
(1)證明:AC⊥PB;
(2)證明:PB∥平面AEC;
(3)求二面角E-AC-B的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在底面為平行四邊形的四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,AD=1,CD=2,∠DCB=60°.
(Ⅰ) 求證:平面A1BCD1⊥平面BDD1B1;
(Ⅱ)若D1D=BD,求四棱錐D-A1BCD1的體積.

查看答案和解析>>

同步練習冊答案