(2013•東城區(qū)模擬)執(zhí)行如圖所示的程序,輸出的結(jié)果為20,則判斷框中應(yīng)填入的條件為( 。
分析:框圖在給變量a和s賦值后首先進(jìn)行判斷,滿(mǎn)足判斷框中的條件,執(zhí)行運(yùn)算s=s×a,a=a-1,不滿(mǎn)足輸出s,然后再進(jìn)行判斷,執(zhí)行,我們可線(xiàn)假定滿(mǎn)足判斷框中的條件,執(zhí)行運(yùn)算,當(dāng)運(yùn)算到s的值為20時(shí),看此時(shí)a的值,此時(shí)a的值應(yīng)不滿(mǎn)足判斷框中的條件,由此可得結(jié)論.
解答:解:框圖首先給變量a和s賦值,a=5,s=1.
判斷,判斷框中的條件成立,執(zhí)行s=1×5=5,a=5-1=4;
判斷,判斷框中的條件成立,執(zhí)行s=5×4=20,a=4-1=3;
此時(shí)的s值為程序運(yùn)行結(jié)束輸出的值,再判斷時(shí)判斷框中的條件應(yīng)不滿(mǎn)足,
即a=3不大于等于4.
所以你判斷框中的條件應(yīng)是a≥4.
故選C.
點(diǎn)評(píng):本題考查了程序框圖,是當(dāng)型結(jié)構(gòu),當(dāng)型結(jié)構(gòu)是先判斷后執(zhí)行,滿(mǎn)足條件執(zhí)行循環(huán),不滿(mǎn)足條件跳出循環(huán),算法結(jié)束,此題是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)如圖,△BCD是等邊三角形,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點(diǎn),將△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′;
(2)求證:C′A⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)已知函數(shù)f(x)=lnx+
a
x
(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)如果P(x0,y0)是曲線(xiàn)y=f(x)上的任意一點(diǎn),若以P(x0,y0)為切點(diǎn)的切線(xiàn)的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的最小值;
(3)討論關(guān)于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的實(shí)根情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,則f(f(-1))等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)根據(jù)表格中的數(shù)據(jù),可以斷定函數(shù)f(x)=lnx-
3
x
的零點(diǎn)所在的區(qū)間是( 。
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)對(duì)定義域的任意x,若有f(x)=-f(
1
x
)
的函數(shù),我們稱(chēng)為滿(mǎn)足“翻負(fù)”變換的函數(shù),下列函數(shù):
y=x-
1
x
,
②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中滿(mǎn)足“翻負(fù)”變換的函數(shù)是
①③
①③
. (寫(xiě)出所有滿(mǎn)足條件的函數(shù)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案