數(shù)列{an}:a1=1,a2=3,a3=2,an+2=an+1-an,求S2002.
【答案】分析:由a1=1,a2=3,a3=2,an+2=an+1-an可得a4=-1,a5=-3,a6=-2,a7=1,a8=3,a9=2,a10=-1,a11=-3,a12=-2,…a6k+1=1,
從而可得數(shù)列是以6為周期的周期數(shù)列,且有a6k+1+a6k+2+a6k+3+a6k+4+a6k+5+a6k+6=0,代入可求和
解答:解:設S2002=a1+a2+a3+…+a2002
由a1=1,a2=3,a3=2,an+2=an+1-an可
可得a4=-1,a5=-3,a6=-2,a7=1,a8=3,a9=2,a10=-1,a11=-3,a12=-2,…a6k+1=1,
即a6k+2=3,a6k+3=2,a6k+4=-1,a6k+5=-3,a6k+6=-2
∵a6k+1+a6k+2+a6k+3+a6k+4+a6k+5+a6k+6=0(找特殊性質(zhì)項)
∴S2002=a1+a2+a3+…+a2002(
=(a1+a2+a3+…a6)+(a7+a8+…a12)+…+(a6k+1+a6k+2+…+a6k+6)+…+(a1993+a1994+…+a1998)+a1999+a2000+a2001+a2002
=a1999+a2000+a2001+a2002
=a6k+1+a6k+2+a6k+3+a6k+4
=5
點評:本題主要考查了由數(shù)列的遞推關系求解數(shù)列的和,解題的關鍵是由數(shù)列的遞推公式求解數(shù)列的前幾項,然后總結出數(shù)列的周期性的特點.