8.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,則z=2x-3y的最小值為( 。
A.-32B.-16C.-10D.-6

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)判斷最優(yōu)解,代入求解即可.

解答 解:作出不等式組$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,所表示的平面區(qū)域如下圖陰影部分所示,由$\left\{\begin{array}{l}{x=7}\\{2x-y=4}\end{array}\right.$解得C(7,14)
觀察可知,當(dāng)直線z=2x-3y過(guò)點(diǎn)C(7,10)時(shí),z有最小值,最小值為:-16.
故選:B.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,畫出可行域以及判斷目標(biāo)函數(shù)的幾何意義求出最優(yōu)解是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{5}$=1的右焦點(diǎn)與拋物線y2=12x的焦點(diǎn)重合,則該雙曲線的焦點(diǎn)到其漸近線的距離等于(  )
A.$\sqrt{5}$B.3C.5D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點(diǎn)到直線x=$\frac{a^2}{c}$的距離為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為橢圓上的一點(diǎn)(點(diǎn)P不在y軸上),過(guò)點(diǎn)O作OP的垂線交直線y=$\sqrt{2}$于點(diǎn)Q,求$\frac{1}{{|OP{|^2}}}+\frac{1}{{|OQ{|^2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知正項(xiàng)數(shù)列{an}中,a1=1,a2=$\sqrt{3},2{a_n}^2={a_{n+1}}^2+{a_{n-1}}$2(n≥2),則a5=( 。
A.9B.6C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=sin2x+cos2x如何平移可以得到函數(shù)y=sin2x-cos2x圖象(  )
A.向左平移$\frac{π}{2}$B.向右平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.有以下幾種說(shuō)法:(l1、l2不重合)
①若直線l1,l2都有斜率且斜率相等,則l1∥l2; 
 ②若直線l1⊥l2,則它們的斜率互為負(fù)倒數(shù);   
③兩條直線的傾斜角相等,則這兩條直線平行;  
④只有斜率相等的兩條直線才一定平行.   
以上說(shuō)法中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,長(zhǎng)方體ABCD-A'B'C'D'被截去一部分,其中EH∥A'D',截去的幾何體是三棱柱,則剩下的幾何體是五棱柱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=x3-3x2+1是減函數(shù)的單調(diào)區(qū)間為( 。
A.(2,+∞)B.(-∞,2)C.(-∞,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$y=b+{a^{{x^2}+2x}}$(a,b是常數(shù),a>0且a≠1)在區(qū)間$[{-\frac{3}{2},0}]$上有最大值3,最小值為$\frac{5}{2}$.試求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案