設(shè)a,b∈R,若是3a與3b的等比中項,則2a+2b的最小值是
[     ]
A.6
B.4
C.2
D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于定義在D上的函數(shù)y=f(x),若同時滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對一切t∈R恒成立,求實數(shù)x的范圍;
(3)若數(shù)學(xué)公式是“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市啟東中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

對于定義在D上的函數(shù)y=f(x),若同時滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對一切t∈R恒成立,求實數(shù)x的范圍;
(3)若是“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省揚(yáng)州中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

對于定義在D上的函數(shù)y=f(x),若同時滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對一切t∈R恒成立,求實數(shù)x的范圍;
(3)若是“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)是定義在R上的正值函數(shù),且滿足,若是周期函數(shù),則它的一個周期是(   )

(A)2          (B)3             (C)4            (D)6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)是定義在R上的正值函數(shù),且滿足,若是周期函數(shù),則它的一個周期是(   )

(A)2          (B)3             (C)4            (D)6

查看答案和解析>>

同步練習(xí)冊答案