精英家教網 > 高中數學 > 題目詳情
已知f(x)是定義在R上的偶函數,f(x)在x∈[0,+∞)上為增函數,且f(
1
3
)=0
,則不等式f(log
1
8
x
)>0
的解集為( 。
A、(0,
1
2
)
B、(2,+∞)
C、(
1
2
,1)∪(2,+∞)
D、[0,
1
2
)∪(2,+∞)
分析:利用偶函數的圖象關于y軸對稱,又且在[0,+∞)上為增函數,將不等式中的抽象的對應法則“f”脫去,解對數不等式求出解集.
解答:解:∵f(x)是定義在R上的偶函數,且在[0,+∞)上為增函數
又∵f(
1
3
)=0
,f(log
1
8
x)>0

|log
1
8
x|>
1
3

log
1
8
x>
1
3
log
1
8
x<-
1
3

解得 0<x<
1
2
或x>2

答案為 (0,
1
2
)∪(2,+∞)

故選D
點評:本題奇偶性與單調性的綜合,考查對數函數的單調性與特殊點、利用函數的對稱性及函數的單調性脫抽象的法則,將抽象不等式轉化為具體不等式解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數,它在定義域內單調遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數,且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數a=1在f(x)=-x2+x+lnx上是增函數;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實數x=1的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

8、已知f(x)是定義在R上的函數,f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在實數集R上的增函數,且f(1)=0,函數g(x)在(-∞,1]上為增函數,在[1,+∞)上為減函數,且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數,且在(-∞,0)上是增函數,設a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關系
a>b>c
a>b>c

查看答案和解析>>

同步練習冊答案