(本小題滿分13分)設數(shù)列
的前
項和為
,且
;數(shù)列
為等差數(shù)列,且
。
求證:數(shù)列
是等比數(shù)列,并求
通項公式;
若
,
為數(shù)列
的前
項和,求
。
試題分析:(1)由
,
,即
,又
所以
,所以
。
.
(2)數(shù)列
為等差數(shù)列,公差
,
從而
,
=
=
從而
.
點評:我們要熟練掌握求數(shù)列通項公式的方法。公式法是求數(shù)列通項公式的基本方法之一,常用的公式有:等差數(shù)列的通項公式、等比數(shù)列的通項公式及公式
。此題的第一問求數(shù)列的通項公式就是用公式
,用此公式要注意討論
的情況。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)
設數(shù)列
為單調(diào)遞增的等差數(shù)列,
,且
依次成等比數(shù)列.
(Ⅰ)求數(shù)列
的通項公式
;
(Ⅱ)若
,求數(shù)列
的前
項和
;
(Ⅲ)若
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列{
}的前n項和為
,則常數(shù)
= ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)設數(shù)列
的前
項和為
,已知
,
(
為常數(shù),
),且
成等差數(shù)列.
(1) 求
的值;
(2) 求數(shù)列
的通項公式;
(3) 若數(shù)列
是首項為1,公比為
的等比數(shù)列,記
.求證:
,(
).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列
的前n項和為
,已知
,
,則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設數(shù)列{an}滿足
,(n∈N﹡),且
,則數(shù)列{an}的通項公式為 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設等差數(shù)列
的前
項和為
、
是方程
的兩個根,則
等于( )
A. | B.5 | C. | D.-5 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
和等比數(shù)列
滿足:
,設
,(其中
)。求數(shù)列
的通項公式以及前
項和
。
查看答案和解析>>