f(x)=
ax,(x>1)
(4-
a
2
)x+2,(x≤1)
是R上的單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.[4,8)C.(4,8)D.(1,8)
∵當(dāng)x≤1時(shí),f(x)=(4-
a
2
)x+2為增函數(shù)
∴4-
a
2
>0?a<8
又∵當(dāng)x>1時(shí),f(x)=ax為增函數(shù)
∴a>1
同時(shí),當(dāng)x=1時(shí),函數(shù)對(duì)應(yīng)于一次函數(shù)的取值要小于指數(shù)函數(shù)的取值
∴(4-
a
2
)×1+2≤a1=a?a≥4
綜上所述,4≤a<8
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)證明函數(shù)f ( x )的圖象關(guān)于y軸對(duì)稱;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
(3)當(dāng)x∈[1,2]時(shí)函數(shù)f (x )的最大值為
103
,求此時(shí)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)記函數(shù)f(x)在區(qū)間D上的最大值與最小值分別為max{f(x)|x∈D}與min{f(x)|x∈D}.設(shè)函數(shù)f(x)=
-x+2b,  x∈[1,b]
b,         x∈(b,3]
,1<b<3.g(x)=f(x)+ax,x∈[1,3].
(1)若函數(shù)g(x)在[1,3]上單調(diào)遞減,求a的取值范圍;
(2)若a∈R.令,h(a)=max{g(x)|x∈[1,3]}-{g(x)|x∈[1,3]}.記d(b)=min{h(a)|a∈R}.試寫出h(a)的表達(dá)式,并求min{d(b)|b∈(1,3)};
(3)令k(a)=max{g[f(x)]|x∈l}-min{g[f(x)]|x∈l}(其中l(wèi)為g[f(x)]的定義域).若l恰好為[1,3],求b的取值范圍,并求min{k(a)|a∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=ax+a-x(a>0且a≠1),
(1)證明函數(shù)f ( x )的圖象關(guān)于y軸對(duì)稱;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
(3)當(dāng)x∈[1,2]時(shí)函數(shù)f (x )的最大值為
10
3
,求此時(shí)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏石嘴山三中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)f(x)=ax,,h(x)=logax,實(shí)數(shù)a滿足>0,那么當(dāng)x>1時(shí)必有( )
A.h(x)<g(x)<f(x)
B.h(x)<f(x)<g(x)
C.f(x)<g(x)<h(x)
D.f(x)<h(x)<g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

記函數(shù)f(x)在區(qū)間D上的最大值與最小值分別為max{f(x)|x∈D}與min{f(x)|x∈D}.設(shè)函數(shù)f(x)=,1<b<3.g(x)=f(x)+ax,x∈[1,3].
(1)若函數(shù)g(x)在[1,3]上單調(diào)遞減,求a的取值范圍;
(2)若a∈R.令,h(a)=max{g(x)|x∈[1,3]}-{g(x)|x∈[1,3]}.記d(b)=min{h(a)|a∈R}.試寫出h(a)的表達(dá)式,并求min{d(b)|b∈(1,3)};
(3)令k(a)=max{g[f(x)]|x∈l}-min{g[f(x)]|x∈l}(其中l(wèi)為g[f(x)]的定義域).若l恰好為[1,3],求b的取值范圍,并求min{k(a)|a∈R}.

查看答案和解析>>

同步練習(xí)冊(cè)答案