已知四棱錐P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,點(diǎn)F為PC的中點(diǎn).
(Ⅰ)求證:PA∥平面BFD;
(Ⅱ)求二面角P―BF―D的大。
(Ⅰ)證明:連結(jié),與交于點(diǎn),連結(jié).是菱形,∴是的中點(diǎn).點(diǎn)為的中點(diǎn),∴.平面平面,∴平面. (Ⅱ)解法一: 平面,平面,∴. ,∴.是菱形,∴. , ∴平面. 作,垂足為,連接,則, 所以為二面角的平面角. ,∴,. 在Rt△中,=,∴. ∴二面角的大小為 二面角的平面角與二面角的平面角互補(bǔ) ∴二面角的大小為- 解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線(xiàn)段的垂直平分線(xiàn)所在直線(xiàn)為軸,所在直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系,令, 則,,. ∴.設(shè)平面的一個(gè)法向量為, 由,得, 令,則,∴. 平面,平面, ∴. ,∴. 是菱形,∴. ,∴平面. ∴是平面的一個(gè)法向量,. ∴, ∴,∴.13分 ∴二面角的大小為 ∴二面角的大小為-. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com