設(shè)F(1,0),M點(diǎn)在x軸上,P點(diǎn)在y軸上,且=2,,當(dāng)點(diǎn)P在y軸上運(yùn)動(dòng)時(shí),點(diǎn)N的軌跡方程為(  )

A.y2=2x B.y2=4x

C.y2=x D.y2=x

 

B

【解析】設(shè)M(x0,0),P(0,y0),N(x,y),

,=(x0,-y0),

=(1,-y0),

∴(x0,-y0)·(1,-y0)=0,

∴x0+y02=0.

=2,得(x-x0,y)=2(-x0,y0),

∴-x+=0,

即y2=4x.

故所求的點(diǎn)N的軌跡方程是y2=4x.

故選B.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):選4-1-1相似三角形判定及性質(zhì)(解析版) 題型:選擇題

如圖所示,在△ABC中,MN∥DE∥DC,若AE∶EC=7∶3,則DB∶AB的值為(  )

A.3∶7 B.7∶3 C.3∶10 D.7∶10

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):9-1隨機(jī)抽樣(解析版) 題型:選擇題

某校選修乒乓球課程的學(xué)生中,高一年級(jí)有30名,高二年級(jí)有40名.現(xiàn)用分層抽樣的方法在這70名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)的學(xué)生中抽取了6名,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為(  )

A.6 B.8 C.10 D.12

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-9圓錐曲線的綜合問(wèn)題(解析版) 題型:選擇題

若橢圓=1與雙曲線=1(m,n,p,q均為正數(shù))有共同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)公共點(diǎn),則·=(  )

A.p2-m2 B.p-m C.m-p D.m2-p2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:解答題

已知雙曲線-y2=1的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn).求直線A1P與A2Q交點(diǎn)的軌跡E的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-7拋物線(解析版) 題型:解答題

如圖,等邊三角形OAB的邊長(zhǎng)為8,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.

(1)求拋物線E的方程;

(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q,證明以PQ為直徑的圓恒過(guò)y軸上某定點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-7拋物線(解析版) 題型:填空題

已知拋物線y2=4x的弦AB的中點(diǎn)的橫坐標(biāo)為2,則|AB|的最大值為_(kāi)_______.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:填空題

在平面直角坐標(biāo)系xOy中,若雙曲線=1的離心率為,則m的值為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:選擇題

方程|x|-1=所表示的曲線是(  )

A.一個(gè)圓 B.兩個(gè)圓 C.半個(gè)圓 D.兩個(gè)半圓

 

查看答案和解析>>

同步練習(xí)冊(cè)答案