【題目】已知,p:,q:.
已知p是q成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;
若是成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.
【答案】(1);(2)
【解析】
(1)解一元二次不等式求得條件中不等式的解集.根據(jù)是的必要不充分條件可知,中的范圍是中不等式解集的真子集,由此列不等式組,解不等式組求得的取值范圍.(2)根據(jù)是的充分不必要條件可知是的充分不必要條件,即中不等式的解集是中范圍的真子集,由此列不等式組,解不等式組求得的取值范圍.
由得,即p:
是q成立的必要不充分條件,則是的真子集,
有,解得,
又當(dāng)時(shí),,不合題意,
的取值范圍是.
是的充分不必要條件,是q的充分不必要條件,
則是的真子集,則,
解得,又當(dāng)時(shí),,不合題意.
的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,m,n表示兩條不同的直線(xiàn),、、表示三個(gè)不同的平面.正確的命題是( )
若,,則;若,,則;
若,,則;若,,,則.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò)點(diǎn),,且圓心在直線(xiàn)上,過(guò)點(diǎn)作直線(xiàn)與圓:交于兩點(diǎn),.
(1)求圓的方程;
(2)當(dāng)時(shí),若于圓交于,且,求直線(xiàn)的方程;
(3)若點(diǎn)恰好是線(xiàn)段的中點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年為我國(guó)改革開(kāi)放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:
年齡段 | ||||
人數(shù)(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會(huì)的觀(guān)眾.
(1)抽出的青年觀(guān)眾與中年觀(guān)眾分別為多少人?
(2)若所抽取出的青年觀(guān)眾與中年觀(guān)眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列列聯(lián)表,并回答能否有的把握認(rèn)為年齡層與熱衷關(guān)心民生大事有關(guān)?
熱衷關(guān)心民生大事 | 不熱衷關(guān)心民生大事 | 總計(jì) | |
青年 | 12 | ||
中年 | 5 | ||
總計(jì) | 30 |
(3)若從熱衷關(guān)心民生大事的青年觀(guān)眾(其中1人擅長(zhǎng)歌舞,3人擅長(zhǎng)樂(lè)器)中,隨機(jī)抽取2人上臺(tái)表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若曲線(xiàn)C上任意一點(diǎn)與直線(xiàn)上任意一點(diǎn)的距離都大于1,則稱(chēng)曲線(xiàn)C遠(yuǎn)離”直線(xiàn),在下列曲線(xiàn)中,“遠(yuǎn)離”直線(xiàn):y=2x的曲線(xiàn)有___________(寫(xiě)出所有符合條件的曲線(xiàn)的編號(hào))
①曲線(xiàn)C:;②曲線(xiàn)C:;③曲線(xiàn)C:;
④曲線(xiàn)C:;⑤曲線(xiàn)C:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是梯形,AD∥BC,∠BAD=90°,四邊形CC1D1D為矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.
(I)求證:BC1∥平面ADD1;
(II)若DD1=2,求平面AC1D1與平面ADD1所成的銳二面角的余弦值;
(III)設(shè)P為線(xiàn)段C1D上的一個(gè)動(dòng)點(diǎn)(端點(diǎn)除外),判斷直線(xiàn)BC1與直線(xiàn)CP能否垂直?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計(jì)算機(jī)年,萊布尼茨改進(jìn)了帕斯卡的計(jì)算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運(yùn)算在計(jì)算機(jī)上實(shí)現(xiàn)起來(lái)過(guò)于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念之后,人們對(duì)進(jìn)位制的效率問(wèn)題進(jìn)行了深入的研究研究方法如下:對(duì)于正整數(shù),,我們準(zhǔn)備張不同的卡片,其中寫(xiě)有數(shù)字0,1,…,的卡片各有張如果用這些卡片表示位進(jìn)制數(shù),通過(guò)不同的卡片組合,這些卡片可以表示個(gè)不同的整數(shù)例如,時(shí),我們可以表示出共個(gè)不同的整數(shù)假設(shè)卡片的總數(shù)為一個(gè)定值,那么進(jìn)制的效率最高則意味著張卡片所表示的不同整數(shù)的個(gè)數(shù)最大根據(jù)上述研究方法,幾進(jìn)制的效率最高?
A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, 底面,. 、分別為和的中點(diǎn). 為側(cè)棱上的動(dòng)點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)試判斷直線(xiàn)與平面是否能夠垂直.若能垂直,求的值;若不能垂直,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com