如圖,PT切圓O于點T,PA交圓O于A、B兩點,且與直徑CT交于點D,CD=2,AD=3,BD=6,則PB=   
【答案】分析:首先根據(jù)題中圓的相交弦定理得DT,再依據(jù)直角三角形的勾股定理用PB表示出PT,最后結(jié)合切割線定理求得一個關(guān)于PB線段的方程式,解此方程即可.
解答:解:如圖,由相交弦定理可知,
2•DT=3•6
⇒DT=9.
在直角三角形PTD中,

由切割線定理可知
PT2=PB•PA
⇒(6+x)2-92=x(x+9)
⇒x=15.
故填:15.
點評:此題綜合運用了切割線定理、圓的相交弦定理以及與圓有關(guān)的直角三角形,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PT切圓O于點T,PA交圓O于A、B兩點,且與直徑CT交于點D,CD=2,AD=3,BD=6,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市天河區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,PT切圓O于點T,PA交圓O于A、B兩點,且與直徑CT交于點D,CD=2,AD=3,BD=6,則PB=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測試卷12(理科)(解析版) 題型:解答題

如圖,PT切圓O于點T,PA交圓O于A、B兩點,且與直徑CT交于點D,CD=2,AD=3,BD=6,則PB=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測試卷12(文科)(解析版) 題型:解答題

如圖,PT切圓O于點T,PA交圓O于A、B兩點,且與直徑CT交于點D,CD=2,AD=3,BD=6,則PB=   

查看答案和解析>>

同步練習(xí)冊答案