設函數(shù)f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,
3
sin2x),x∈R.?
(1)若f(x)=1-
3
,且x∈[-
π
3
,
π
3
],求x;?
(2)若函數(shù)y=2sin2x的圖象按向量
c
=(m,n),(|m|<
π
2
)平移后得到函數(shù)y=f(x)的圖象,求實數(shù)m、n的值.
分析:(1)把向量代入數(shù)量積,利用二倍角和兩角和的正弦函數(shù)化簡為f(x)=1+2sin(2x+
π
6
),通過f(x)=1-
3
,且x∈[-
π
3
,
π
3
],得到?sin(2x+
π
6
)
=-
3
2
.?求出x的值.
(2)函數(shù)y=2sin2x的圖象按向量
c
=(m,n),(|m|<
π
2
)平移后得到函數(shù)y=f(x)的圖象,說明兩個函數(shù)表達式相同,比較兩個函數(shù)的關(guān)系,即可求出實數(shù)m、n的值.
解答:解:(1)依題設f(x)=2cos2x+
3
sin2x=1+2sin(2x+
π
6
),
由1+2sin(2x+
π
6
)=1-
3
,
得?sin(2x+
π
6
)
=-
3
2
.?
∵-
π
3
≤x≤
π
3
,
∴-
π
2
≤2x+
π
6
6
,?
∴2x+
π
6
=-
π
3
,即x=-
π
4


(2)函數(shù)y=2sin2x的圖象按向量
c
=(m,n)平移后得到函數(shù)y=2sin2(x-m)+n的圖象,
即函數(shù)y=f(x)的圖象.?
由(1)得f(x)=2sin(2x+
π
6
)
+1,?
∴|m|<
π
2
,
∴m=-
π
12
,n=1.?
點評:本題是中檔題,高考常考題型,考查二倍角公式,兩角和的正弦函數(shù),已知函數(shù)值求角,三角函數(shù)圖象的平移等知識,考查計算能力,邏輯推理能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=A+Bsinx,若B<0時,f(x)的最大值是
3
2
,最小值是-
1
2
,則A=
 
,B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
a
b
其中向量
a
=(2cosx,1),b=(cosx,
3
sin2x+m)

(1)求函數(shù)f(x)的最小正周期和在[0,π]上的單調(diào)遞增區(qū)間;
(2)當x∈[0,
π
6
]
時,f(x)的最大值為4,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a+bcosx+csinx的圖象過點(0,1)和點(
π
2
,1)
,當x∈[0,
π
2
]
時,|f(x)|<2,則實數(shù)a的取值范圍是( 。
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b與c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),設函數(shù)f(x)=
a
b
(x∈R)的圖象關(guān)于直線x=
π
3
對稱,其中常數(shù)ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
12
個單位,得到函數(shù)g(x)的圖象,用五點法作出函數(shù)g(x)在區(qū)間[-
π
2
π
2
]的圖象.

查看答案和解析>>

同步練習冊答案