22、對(duì)于函數(shù)f(x),若f(x)=x,則稱(chēng)x為f(x)的“不動(dòng)點(diǎn)”,若f(x)=ax2+(b+1)x+b-2(a≠0).
(1)若a=2,b=-2,求f(x)的不動(dòng)點(diǎn);
(2)若f(x)有兩個(gè)不等的不等點(diǎn),求實(shí)數(shù)a的取值范圍.
分析:(1)由函數(shù)f(x)不動(dòng)點(diǎn)的定義,若f(x)=x,則稱(chēng)x為f(x)的“不動(dòng)點(diǎn)”,結(jié)合f(x)=ax2+(b+1)x+b-2(a≠0),a=2,b=-2,我們可以構(gòu)造一個(gè)關(guān)于x的一元二次方程,解方程,即可求出f(x)的不動(dòng)點(diǎn).
(2)若f(x)有兩個(gè)不等的不等點(diǎn),則方程f(x)=x有兩個(gè)不等的實(shí)數(shù)根,由一元二次方程根的個(gè)數(shù)與△的關(guān)系,我們不難得到實(shí)數(shù)a的取值范圍.
解答:解:∵f(x)=ax2+(b+1)x+b-2(a≠0)
(1)當(dāng)a=2,b=-2時(shí),f(x)=2x2-x-4
設(shè)x為其不動(dòng)點(diǎn),即2x2-x-4=x
則2x2-2x-4=0
∴x1=-1,x2=2,即f(x)的不動(dòng)點(diǎn)是-1,2.
(2)由f(x)=x得:ax2+bx+b-2(a≠0)
由已知,此方程有相異二實(shí)根,
△>0恒成立,即
即b2-4ab+8a>0恒成立.
∴16a2-32a<0
解得:0<a<2
點(diǎn)評(píng):這是一道新運(yùn)算類(lèi)的題目,其特點(diǎn)一般是“新”而不“難”,處理的方法一般為:根據(jù)新運(yùn)算的定義,將已知中的數(shù)據(jù)代入進(jìn)行運(yùn)算,易得最終結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在區(qū)間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱(chēng)區(qū)間M為函數(shù)f(x)的一個(gè)“穩(wěn)定區(qū)間”.給出下列4個(gè)函數(shù):
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“穩(wěn)定區(qū)間”的函數(shù)有
 
(填出所有滿足條件的函數(shù)序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若在其定義域內(nèi)存在兩個(gè)實(shí)數(shù)a,b(a<b),使當(dāng)x∈[a,b]時(shí),f(x)的值域也是[a,b],則稱(chēng)函數(shù)f(x)為“科比函數(shù)”.若函數(shù)f(x)=k+
x+2
是“科比函數(shù)”,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為f(x)的不動(dòng)點(diǎn).如果函數(shù)
f(x)=ax2+bx+1(a>0)有兩個(gè)相異的不動(dòng)點(diǎn)x1,x2
(1)若x1<1<x2,且f(x)的圖象關(guān)于直線x=m對(duì)稱(chēng),求證:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若f(x0)=x0,則稱(chēng)x0為f(x)的:“不動(dòng)點(diǎn)”;若f[f(x0)]=x0,則稱(chēng)x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請(qǐng)給出證明,若不能,請(qǐng)舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱(chēng)x0為函數(shù)f(x)的不動(dòng)點(diǎn).若函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個(gè)不動(dòng)點(diǎn)0和2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)區(qū)間,
(2)已知各項(xiàng)不為0的數(shù)列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數(shù)列{an}的前n項(xiàng)和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設(shè)bn=-
1
an
,Tn表示數(shù)列{bn}的前n項(xiàng)和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

同步練習(xí)冊(cè)答案