(12分)經(jīng)過作直線交曲線:(為參數(shù))于、兩點,若成等比數(shù)列,求直線的方程.
【解析】
試題分析:把曲線的參數(shù)方程化為普通方程,由|AB|2=|MA|•|MB|,可得|AB|等于圓的切線長,設出直線l的方程,求出弦心距d,再利用弦長公式求得|AB|,由此求得直線的斜率k的值,即可求得直線l的方程.
解:直線的參數(shù)方程:(為參數(shù)),…………①
曲線:化為普通方程為,…………②
將①代入②整理得:,設、對應的參數(shù)分別為,
,由成等比數(shù)列得:,
,,,
直線的方程為:
考點:本題主要考查把參數(shù)方程化為普通方程的方法,點到直線的距離公式的應用,直線和圓的位置關系,屬于基礎題.
點評:解決該試題的關鍵是把曲線的參數(shù)方程化為普通方程,由|AB|2=|MA|•|MB|,可得|AB|等于圓的切線長,利用切割線定理得到,并結合勾股定理得到結論。
科目:高中數(shù)學 來源: 題型:
OP |
OF |
0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山西省高三第一次月考摸底理科數(shù)學試卷(解析版) 題型:解答題
經(jīng)過作直線交曲線:(為參數(shù))于、兩點,若成等比數(shù)列,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江蘇省高二下期中理科數(shù)學試卷(解析版) 題型:解答題
已知中心在原點,焦點在x軸上的橢圓離心率為,且經(jīng)過點,過橢圓的左焦點作直線交橢圓于A、B兩點,以OA、OB為鄰邊作平行四邊形OAPB。
(1)求橢圓E的方程
(2)現(xiàn)將橢圓E上的點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼囊话,求所得曲線的焦點坐標和離心率
(3)是否存在直線,使得四邊形OAPB為矩形?若存在,求出直線的方程。若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com