已知a>0,且a≠1,f(logax)=
a
a2-1
(x-
1
x
)

(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)的奇偶性與單調(diào)性;
(3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),有f(1-m)+f(1-m2)<0,求實(shí)數(shù)m的集合M.
分析:(1)利用對(duì)數(shù)函數(shù)的性質(zhì)結(jié)合換元法令t=logax,從而推出x=at,導(dǎo)出f(t)后,直接把f(t)中的變量t都換成x就得到f(x).
(2)求出f(-x),然后把f(-x)和f(x)進(jìn)行比較,若f(-x)=f(x),則f(x)是奇函數(shù);若f(-x)=-f(x),則f(x)是偶函數(shù);若f(-x)≠±f(x),則f(x)是非奇非偶函數(shù).利用單調(diào)函數(shù)的定義和性質(zhì)證明單調(diào)性.
(3)結(jié)合f(x)的奇偶性與單調(diào)性進(jìn)行求解.y=f(x),(x∈R)既是奇函數(shù)又是增函數(shù),故由f(1-m)+f(1-m2)<0可知f(1-m)<-f(1-m2),即f(1-m)<f(m2-1),再y=f(x)在(-1,1)上是增函數(shù)求解m的取值范圍.
解答:解:(1)令t=logax(t∈R),
則x=atf(t)=
a
a2-1
(at-a-t)

f(x)=
a
a2-1
(ax-a-x)
(x∈R).
(2)∵f(-x)=
a
a2-1
(a-x-ax)=-
a
a2-1
(ax-a-x)=-f(x)
,且x∈R,
∴f(x)為奇函數(shù).
當(dāng)a>1時(shí),指數(shù)函數(shù)y=ax是增函數(shù),y=(
1
a
)x=a-x
是減函數(shù),y=-a-x是增函數(shù).
∴y=ax-a-x為增函數(shù),
又因?yàn)?span id="izlibgj" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
a
a2-1
>0,
f(x)=
a
a2-1
(ax-a-x)
,(x∈R)是增函數(shù).
當(dāng)0<a<1時(shí),指數(shù)函數(shù)y=ax是減函數(shù),
y=(
1
a
)
x
=a-x
是增函數(shù),y=-a-x是減函數(shù).
∴u(x)=ax-a-x為減函數(shù).
又因?yàn)?span id="nqwcm6y" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
a
a2-1
<0,
f(x)=
a
a2-1
(ax-a-x)
,(x∈R)是增函數(shù).
綜上可知,在a>1或0<a<1時(shí),y=f(x),(x∈R)都是增函數(shù).
(3)由(2)可知y=f(x),(x∈R)既是奇函數(shù)又是增函數(shù).
∵f(1-m)+f(1-m2)<0,
∴f(1-m)<-f(1-m2),
又y=f(x),(x∈R)是奇函數(shù),
∴f(1-m)<f(m2-1),,
因?yàn)楹瘮?shù)y=f(x)在(-1,1)上是增函數(shù),
∴-1<1-m<m2-1<1,
解之得:1<m<
2
點(diǎn)評(píng):合理選取函數(shù)的性質(zhì)能夠有效地簡(jiǎn)化運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,且a≠1,設(shè)p:函數(shù)y=loga(x+1)在x∈(0,+∞)內(nèi)單調(diào)遞減;q:函數(shù)y=x2+(2a-3)x+1有兩個(gè)不同零點(diǎn),如果p和q有且只有一個(gè)正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a>0,且a≠1,數(shù)學(xué)公式
(1)求f(x)的表達(dá)式,并判斷其單調(diào)性;
(2 )當(dāng)f(x)的定義域?yàn)椋?1,1)時(shí),解關(guān)于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒為負(fù)值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省杭州市學(xué)軍中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知a>0,且a≠1,
(1)求f(x)的表達(dá)式,并判斷其單調(diào)性;
(2 )當(dāng)f(x)的定義域?yàn)椋?1,1)時(shí),解關(guān)于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒為負(fù)值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年山東省聊城一中高三模塊測(cè)試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知a>0,且a≠1,設(shè)p:函數(shù)y=loga(x+1)在x∈(0,+∞)內(nèi)單調(diào)遞減;q:函數(shù)y=x2+(2a-3)x+1有兩個(gè)不同零點(diǎn),如果p和q有且只有一個(gè)正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省中山一中、深圳市寶安中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知a>0,且a≠1,設(shè)p:函數(shù)y=loga(x+1)在x∈(0,+∞)內(nèi)單調(diào)遞減;q:函數(shù)y=x2+(2a-3)x+1有兩個(gè)不同零點(diǎn),如果p和q有且只有一個(gè)正確,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案