【題目】定義:已知函數(shù)在上的最小值為,若恒成立,則稱函數(shù)在上具有“”性質(zhì).
()判斷函數(shù)在上是否具有“”性質(zhì)?說明理由.
()若在上具有“”性質(zhì),求的取值范圍.
【答案】(1)具有(2)
【解析】試題分析:(1)先根據(jù)二次函數(shù)性質(zhì)求最小值,再根據(jù)定義判斷是否具有“”性質(zhì),(2)先根據(jù)對稱軸與定義區(qū)間位置關(guān)系求函數(shù)最小值,再根據(jù)定義列不等式,解不等式可得的取值范圍.
試題解析:()∵,,
對稱軸,開口向上,
當(dāng)時,取得最小值為,
∴,
∴函數(shù)在上具有“”性質(zhì).
(),,
其圖象的對稱軸方程為.
①當(dāng),即時,.
若函數(shù)具有“”性質(zhì),則有總成立,即.
②當(dāng),即時,
.
若函數(shù)具有“”性質(zhì),則有總成立,解得無解.
③當(dāng),即時,,
若函數(shù)具有“”性質(zhì),
則有,解得無解.
綜上所述,若在上具有“”性質(zhì),則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=2x3﹣9x2+12x+1的單調(diào)減區(qū)間是( )
A.(1,2)
B.(2,+∞)
C.(﹣∞,1)
D.(﹣∞,1)和(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的可導(dǎo)函數(shù),且滿足f′(x)>f(x),對任意的正數(shù)a,下面不等式恒成立的是( )
A.f(a)<eaf(0)
B.f(a)>eaf(0)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0 , 則稱x0是f(x)的一個不動點.
(1)若函數(shù)f(x)=2x+ ﹣5,求此函數(shù)的不動點;
(2)若二次函數(shù)f(x)=ax2﹣x+3在x∈(1,+∞)上有兩個不同的不動點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實數(shù)a、b、c、d,滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則abcd的取值范圍是( )
A.(16,21)
B.(16,24)
C.(17,21)
D.(18,24)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求函數(shù)y=的值的程序框圖如圖所示.
(1)指出程序框圖中的錯誤,并寫出算法;
(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.
①要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?
②要使輸出的值為8,輸入的x值應(yīng)是多少?
③要使輸出的y值最小,輸入的x值應(yīng)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(單位:萬元)有如下的統(tǒng)計資料:
使用年限x/年 | 2 | 3 | 4 | 5 | 6 |
維修費用y/萬元 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知y對x呈線性相關(guān)關(guān)系.試求:
(1)回歸方程x+的系數(shù).
(2)使用年限為10年時,試估計維修費用是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同. ①求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
②記該同學(xué)決賽中答題個數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C極坐標(biāo)方程: ,點P極坐標(biāo)為 ,直線l過點P,且傾斜角為 .
(1)求曲線C的直角坐標(biāo)方程及直線l參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點,求 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com