已知長方體ABCD-A1B1C1D1中,AB=BC=4,CC1=2,則直線BC1和平面DBB1D1所成角的正弦值為
10
5
10
5
分析:要求線面角,先尋找斜線在平面上的射影,因此,要尋找平面的垂線,利用已知條件可得.
解答:解:由題意,連接A1C1,交B1D1于點O
∵長方體ABCD-A1B1C1D1中,AB=BC=4
∴C1O⊥B1D1
∴C1O⊥平面DBB1D1
在Rt△BOC1中,OC1=2
2
,BC1 =2
5

∴直線BC1和平面DBB1D1所成角的正弦值為
10
5

故答案為:
10
5
點評:本題的考點是直線與平面所成的角,主要考查線面角,關(guān)鍵是尋找線面角,通常尋找斜線在平面上的射影.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知長方體ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,點M是棱D1C1的中點.
(1)試用反證法證明直線AB1與BC1是異面直線;
(2)求直線AB1與平面DA1M所成的角(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,點E是B1C1的中點,點F在AB上,建立空間直角坐標(biāo)系如圖所示.
(1)求
AE
的坐標(biāo)及長度;
(2)求點F的坐標(biāo),使直線DF與AE的夾角為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,M、N分別是BB1和BC的中點,AB=4,AD=2,BB1=2
15
,求異面直線B1D與MN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知長方體ABCD-A1B1C1D1,AB=BC=1,BB1=2,連接B1C,過B點作B1C.
的垂線交CC1于E,交B1C于F.
(I)求證:A1C⊥平面EBD;
(Ⅱ)求直線DE與平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1,下列向量的數(shù)量積一定不為0的是(  )
精英家教網(wǎng)
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步練習(xí)冊答案