當(dāng)x∈(1,2)時(shí),不等式(x-1)2<logax恒成立,則實(shí)數(shù)a的取值范圍是 .
【答案】分析:根據(jù)二次函數(shù)和對(duì)數(shù)函數(shù)的圖象和性質(zhì),由已知中當(dāng)x∈(1,2)時(shí),不等式(x-1)2<logax恒成立,則y=logax必為增函數(shù),且當(dāng)x=2時(shí)的函數(shù)值不小于1,由此構(gòu)造關(guān)于a的不等式,解不等式即可得到答案.
解答:解:∵函數(shù)y=(x-1)2在區(qū)間(1,2)上單調(diào)遞增,
∴當(dāng)x∈(1,2)時(shí),y=(x-1)2∈(0,1),
若不等式(x-1)2<logax恒成立,
則a>1且1≤loga2
即a∈(1,2],
故答案為:(1,2].
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),其中根據(jù)二次函數(shù)和對(duì)數(shù)函數(shù)的圖象和性質(zhì),結(jié)合已知條件構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.