(本題滿分14分)已知函數(shù)(R,,,)圖象如圖,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為原點(diǎn).且,

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)將函數(shù)圖象向右平移1個(gè)單位后得到函數(shù)的圖象,當(dāng)時(shí),求函數(shù)的最大值.

 

【答案】

(Ⅰ).(Ⅱ)時(shí)

【解析】本試題主要考查了三角函數(shù)的圖像與性質(zhì),和圖像的變換的綜合運(yùn)用。

(1)利用余弦定理求解三角形得到點(diǎn)P的坐標(biāo),從而得到振幅A,和周期,以及初相的值。

(2)利用三角恒等變換,將三角函數(shù)化為單一三角函數(shù),然后利用圖像的變換,得到函數(shù)的最值。

解(Ⅰ)由余弦定理得,(2分)

,得P點(diǎn)坐標(biāo)為.。3分)

,,.(5分)

的解析式為.(7分)

(Ⅱ),(9分)

.(12分)

當(dāng)時(shí),,

∴ 當(dāng),即時(shí).(14分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對(duì)的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標(biāo)原點(diǎn)且斜率為的直線相交于、

⑴求、的值;

⑵若動(dòng)圓與橢圓和直線都沒有公共點(diǎn),試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時(shí),求證:BD⊥EG ;

(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案