函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其 中A,B兩點之間的距離為5,則f(x)的遞增區(qū)間是( )
A.[6k-1,6k+2](k∈z)
B.[6k-4,6k-1](k∈z)
C.[3k-1,3k+2](k∈z)
D.[3k-4,3k-1](k∈z)_
【答案】分析:由圖象可求函數(shù)f(x)的周期,從而可求得ω,繼而可求得φ,利用正弦函數(shù)的單調(diào)性即可求得f(x)的遞增區(qū)間.
解答:解:|AB|=5,|yA-yB|=4,
所以|xA-xB|=3,即=3,
所以T==6,ω=;
∵f(x)=2sin(x+φ)過點(2,-2),
即2sin(+φ)=-2,
∴sin(+φ)=-1,
∵0≤φ≤π,
+φ=
解得φ=,函數(shù)為f(x)=2sin(x+),
由2kπ-x+≤2kπ+,
得6k-4≤x≤6k-1,
故函數(shù)單調(diào)遞增區(qū)間為[6k-4,6k-1](k∈Z).
故選B
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查復合三角函數(shù)的單調(diào)性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[-
π
3
,
π
4
]
上的最小值是-2,則ω的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2sinωx(ω>0)在[-
3
,
3
]
上單調(diào)遞增,則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鹽城三模)已知函數(shù)f (x)=2sin(ωx+?)(ω>0)的部分圖象如圖所示,則ω=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinωxcosωx-2
3
sin2ωx+
3
(ω>0),直線x=x1,x=x2是函數(shù)y=f(x)的圖象的任意兩條對稱軸,且|x1-x2|的最小值為
π
2

(I)求ω的值;
(II)求函數(shù)f(x)的單調(diào)增區(qū)間;
(III)若f(a)=
2
3
,求sin(
5
6
π-4a)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2sin(x-
π
3
)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在[0,
π
2
]的單調(diào)性.

查看答案和解析>>

同步練習冊答案