8.已知圓C1:x2+y2=4,圓C2:x2+y2+6x-8y+16=0,則圓C1和圓C2的位置關(guān)系是(  )
A.相離B.外切C.相交D.內(nèi)切

分析 把圓的方程化為標準形式,求出圓心和半徑,根據(jù)兩圓的圓心距等于半徑之和,可得兩個圓關(guān)系.

解答 解:圓C1:x2+y2=4,表示以C1(0,0)為圓心,半徑等于2的圓.
圓C2:x2+y2+6x-8y+16=0,即 (x+3)2+(y-4)2=9,表示以C2(-3,4)為圓心,半徑等于3的圓.
∴兩圓的圓心距d=$\sqrt{9+16}$=5=2+3,
∵兩個圓外切.
故選:B.

點評 本題主要考查圓的標準方程,圓和圓的位置關(guān)系,圓的標準方程的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z滿足(3-4i+z)i=2+i,則復(fù)數(shù)z所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>2,b>2,直線$y=-\frac{a}x+b$與曲線(x-1)2+(y-1)2=1只有一個公共點,則ab的取值范圍為(  )
A.$(4,6+4\sqrt{2})$B.$(4,6+4\sqrt{2}]$C.$[6+4\sqrt{2},+∞)$D.$(6+4\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C和拋物線y2=x交于M,N兩點,且直線MN恰好通過橢圓C的右焦點.
(I)求橢圓C的標準方程;
(II)A為橢圓的右頂點,經(jīng)過原點的直線和橢圓C交于B,D兩點,設(shè)直線AB與AD的斜率分別為k1,k2.問k1•k2是否為定值?若為定值,請求出;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點.
(1)證明:PF⊥FD;
(2)若PA=1,求點E到平面PFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某單位280名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
( I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第1,2,3組的員工人數(shù)分別是多少?
( II)為了交流讀書心得,現(xiàn)從上述12人中再隨機抽取3人發(fā)言,設(shè)3人中年齡在[35,40)的人數(shù)為ξ,求ξ的數(shù)學(xué)期望;
( III)為了估計該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做“是否喜歡閱讀國學(xué)類書籍”進行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)
喜歡閱讀國學(xué)類 不喜歡閱讀國學(xué)類 合計
 男 14 4 18
 女 8 14 22
 合計 22 18 40
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認為該單位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=cosxsin2x,以下四個結(jié)論:
①f(x)既是偶函數(shù),又是周期函數(shù);
②f(x)圖象關(guān)于直線x=π對稱;
③f(x)圖象關(guān)于$(\frac{π}{2},0)$中心對稱;
④f(x)的最大值$\frac{4}{9}\sqrt{3}$.
其中,正確的結(jié)論的序號是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)復(fù)數(shù)z滿足$\frac{z+1}{z-2}=1-3i$,則|z|=(  )
A.5B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若等差數(shù)列{an}的前n項和Sn有最大值,且$\frac{{a}_{11}}{{a}_{10}}$<-1,那么令Sn取最小正值的項數(shù)n=( 。
A.15B.17C.19D.21

查看答案和解析>>

同步練習(xí)冊答案