求函數(shù)f(x)=1+x-x2在區(qū)間[2,4]上的最大值和最小值.
分析:對(duì)f(x)進(jìn)行配方,由圖象形狀,可判斷f(x)在[2,4]上的單調(diào)性,據(jù)單調(diào)性即可求得最值.
解答:解:f(x))=1+x-x2,=-(x-
1
2
)2+
5
4
,開(kāi)口向下,對(duì)稱(chēng)軸為x=
1
2
,
f(x)在[2,4]上單調(diào)遞減,
所以fmax(x)=f(2)=-1,fmin(x)=f(4)=-11.
點(diǎn)評(píng):本題考查二次函數(shù)在閉區(qū)間上的最值問(wèn)題,屬基礎(chǔ)題,數(shù)形結(jié)合是解決該類(lèi)問(wèn)題的強(qiáng)有力工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
1+2x+3x4x
在x∈[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用秦九韶算法求函數(shù)f(x)=1+x+x2+x3+2x4,當(dāng)x=1的值時(shí),v2的結(jié)果是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州市八縣(市)一中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

用秦九韶算法求函數(shù)f(x)=1+x+x2+x3+2x4,當(dāng)x=1的值時(shí),v2的結(jié)果是( )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省安陽(yáng)一中分校高一(上)第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題

求函數(shù)f(x)=1+x-x2在區(qū)間[2,4]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案