(文)函數(shù)f(x)=log2(2-ax)在[0,1]上是減函數(shù),則實數(shù)a的取值范圍是
0<a<2
0<a<2
分析:由題意可得u=2-ax是關(guān)于x的減函數(shù),且在[0,1]上恒為正,從而有a>0且2-a×1>0,由此解得a的取值范圍.
解答:解:∵函數(shù)y=log2(2-ax)在[0,1]上單調(diào)遞減,
得u=2-ax是關(guān)于x的減函數(shù),且在[0,1]上恒為正,
∴a>0且2-a×1>0,解得0<a<2,
故a的取值范圍為0<a<2.
故答案為:0<a<2
點評:本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點,對數(shù)函數(shù)的定義域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)函數(shù)f(x)=cos2x+2sinx的最小值為
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)函數(shù)f(x)=sin2(2x)的最小正周期是(  )
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m,n∈[-1,1],m+n≠0,
f(m)+f(n)
m+n
>0
,
(1)證明:f(x)在[-1,1]上是增函數(shù);
(2)解不等式f(x+
1
2
)<f(
1
x-1
)
;
(3)若f(x)≤4t-3•2t+3對所有x∈[-1,1]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)二模)(文)函數(shù)f(x)=|x2-4|+x2-4x的單調(diào)遞減區(qū)間是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案