【題目】將函數(shù)f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)圖象向左平移 個單位后,得到函數(shù)的圖象關(guān)于點(diǎn)( ,0)對稱,則函數(shù)g(x)=cos(x+φ)在[﹣ ]上的最小值是( )
A.﹣
B.﹣
C.
D.

【答案】D
【解析】解:∵f(x)=sin(2x+φ)+ cos(2x+φ)=2sin(2x+φ+ ),
∴將函數(shù)f(x)圖象向左平移 個單位后,得到函數(shù)解析式為:y=2sin[2(x+ )+φ+ ]=2cos(2x+φ+ ),
∵函數(shù)的圖象關(guān)于點(diǎn)( ,0)對稱,
∴對稱中心在函數(shù)圖象上,可得:2cos(2× +φ+ )=2cos(π+φ+ )=0,解得:π+φ+ =kπ+ ,k∈Z,解得:φ=kπ﹣ ,k∈Z,
∵0<φ<π,
∴解得:φ= ,
∴g(x)=cos(x+ ),
∵x∈[﹣ , ],x+ ∈[﹣ , ],
∴cos(x+ )∈[ ,1],則函數(shù)g(x)=cos(x+φ)在[﹣ ]上的最小值是
故選:D.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識點(diǎn),需要掌握圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角,所對的邊分別為,,且,則下列結(jié)論正確的是( )

A.B.是鈍角三角形

C.的最大內(nèi)角是最小內(nèi)角的D.,則外接圓半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

2)對于,為任意實(shí)數(shù),關(guān)于的方程恰好有兩個不等實(shí)根,求實(shí)數(shù)的值;

3)在(2)的條件下,若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(x0 , 0),B(0,y0)兩點(diǎn)分別在x軸和y軸上運(yùn)動,且|AB|=1,若動點(diǎn)P(x,y)滿足
(1)求出動點(diǎn)P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線l1與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程;
(3)直線l2:x=ty+1與曲線C交于A、B兩點(diǎn),E(1,0),試問:當(dāng)t變化時,是否存在一直線l2 , 使△ABE的面積為 ?若存在,求出直線l2的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對該生產(chǎn)線進(jìn)行檢測,現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。

(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為,依據(jù)以下不等式評判(表示對應(yīng)事件的概率)

評判規(guī)則為:若至少滿足以上兩個不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;

(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比小于1的等比數(shù)列{an}的前n項和為Sn , a1= ,且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3(1﹣Sn+1),若 + +…+ = ,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左焦點(diǎn)為F,離心率為 .若經(jīng)過F和P(0,4)兩點(diǎn)的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某“雙一流A類大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:

(1)為感謝同學(xué)們對這項調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機(jī)1部,求獲贈智能手機(jī)的2人月薪都不低于1.75萬元的概率;

(2)同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.

(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;

(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費(fèi)用,有兩種收費(fèi)方案:

方案一:設(shè),月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.

方案二:按每人一個月薪水的3%收;用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊答案