已知雙曲線C的方程為=1(a>0,b>0),離心率,頂點(diǎn)到漸近線的距離為
(I)求雙曲線C的方程;
(II)如圖,P是雙曲線C上一點(diǎn),A,B兩點(diǎn)在雙曲線C的兩條漸近線上,且分別位于第一、二象限,若,求△AOB面積的取值范圍.

【答案】分析:(1)先由雙曲線標(biāo)準(zhǔn)方程求得頂點(diǎn)坐標(biāo)和漸進(jìn)線方程,進(jìn)而根據(jù)頂點(diǎn)到漸近線的距離求得a,b和c的關(guān)系,進(jìn)而根據(jù)離心率求得a和c的關(guān)系,最后根據(jù)c=綜合得方程組求得a,b和c,則雙曲線方程可得.
(2)由(1)可求得漸近線方程,設(shè)A(m,2m),B(-n,2n),根據(jù)得P點(diǎn)的坐標(biāo)代入雙曲線方程化簡(jiǎn)整理m,n與λ的關(guān)系式,設(shè)∠AOB=2θ,進(jìn)而根據(jù)直線的斜率求得tanθ,進(jìn)而求得sin2θ,進(jìn)而表示出|OA|,得到△AOB的面積的表達(dá)式,根據(jù)λ的范圍求得三角形面積的最大值和最小值,△AOB面積的取值范圍可得.
解答:解:(Ⅰ)由題意知,雙曲線C的頂點(diǎn)(O,a)到漸近線ax-by=0的距離為
,
,得
∴雙曲線C的方程為

(Ⅱ)由(Ⅰ)知雙曲線C的兩條漸近線方程為y=±2x.
設(shè)A(m,2m),B(-n,2n),m>0,n>0.
得P點(diǎn)的坐標(biāo)為,
將P點(diǎn)坐標(biāo)代入,化簡(jiǎn)得
設(shè)∠AOB=2θ,∵,∴


,
由S'(λ)=0得λ=1,又S(1)=2,,
當(dāng)λ=1時(shí),△AOB的面積取得最小值2,當(dāng)時(shí),
△AOB的面積取得最大值
∴△AOB面積的取值范圍是
點(diǎn)評(píng):本題主要考查了雙曲線的標(biāo)準(zhǔn)方程和直線與圓錐曲線的綜合問(wèn)題.考查了學(xué)生綜合分析問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的方程為:
x2
9
-
y2
16
=1
(1)求雙曲線C的離心率;
(2)求與雙曲線C有公共的漸近線,且經(jīng)過(guò)點(diǎn)A(-3,2
3
)的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的方程為
y2
a2
-
x2
b2
=1
(a>0,b>0),離心率e=
5
2
,頂點(diǎn)到漸近線的距離為
2
5
5
.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)已知雙曲線C的方程為x2-
y2
4
=1,點(diǎn)A(m,2m)和點(diǎn)B(n,-2n)(其中m和n均為正數(shù))是雙曲線C的兩條漸近線上的兩個(gè)動(dòng)點(diǎn),雙曲線C上的點(diǎn)P滿(mǎn)足
AP
=λ•
PB
(其中λ∈[
1
2
,3]).
(1)用λ的解析式表示mn;
(2)求△AOB(O為坐標(biāo)原點(diǎn))面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),過(guò)右焦點(diǎn)F作雙曲線在一,三象限的漸近線的垂線l,垂足為P,l與雙曲線C的左右的交點(diǎn)分別為A,B
(1)求證:點(diǎn)P在直線x=
a2
c
上(C為半焦距).
(2)求雙曲線C的離心率e的取值范圍.
(3)若|AP|=3|PB|,求離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,它的左、右焦點(diǎn)分別F1,F(xiàn)2,左右頂點(diǎn)為A1,A2,過(guò)焦點(diǎn)F2先做其漸近線的垂線,垂足為p,再作與x軸垂直的直線與曲線C交于點(diǎn)Q,R,若PF2,A1A2,QF1依次成等差數(shù)列,則離心率e=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案