20.某工廠2015年生產(chǎn)某產(chǎn)品2萬件,計劃從2016年開始每年比上一年增產(chǎn)20%,從哪一年開始這家工廠生產(chǎn)這種產(chǎn)品的年產(chǎn)量超過6萬件(已知lg2=0.3010,lg3=0.4771)( 。
A.2019年B.2020年C.2021年D.2022年

分析 此題是平均增長率問題的變式考題,哪一年的年產(chǎn)量超過6萬件,其實就是求在2015年的基礎(chǔ)上再過多少年的年產(chǎn)量大于6萬件,即求經(jīng)過多少年.

解答 解:設(shè)再過n年這家工廠生產(chǎn)這種產(chǎn)品的年產(chǎn)量超過6萬件,?
根據(jù)題意,得2(1+20%)n>6,即1.2n>3,?
兩邊取對數(shù),得nlg1.2>lg3,
∴n>$\frac{lg3}{lg1.2}$≈6.2.
∴n=7,
即2015+7=2 022.
∴從20212開始這家工廠生產(chǎn)這種產(chǎn)品的年產(chǎn)量超過6萬件.
故選:D.

點(diǎn)評 本題考查了簡單的數(shù)學(xué)建模思想方法,考查了對數(shù)的運(yùn)算性質(zhì),解答的關(guān)鍵是對題意的理解,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某企業(yè)生產(chǎn)一種機(jī)器的固定成本為0.5萬元,但每生產(chǎn)1百臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為5百臺,銷售的收入(單位:萬元)函數(shù)為:R(x)=5x-$\frac{1}{2}$x2(0≤x≤5),其中x是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).
(1)將利潤表示為產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時,企業(yè)所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校高二(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,且將全班25人的成績記為AI(I=1,2,…,25)由右邊的程序運(yùn)行后,輸出n=10.據(jù)此解答如下問題:

(Ⅰ)求莖葉圖中破損處分?jǐn)?shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(Ⅱ)利用頻率分布直方圖估計該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,其中左焦點(diǎn)為F(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(x-1)^{2},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$滿足對任意的x1≠x2,都有[f(x1)-f(x2)](x1-x2)<0成立,則a的取值范圍是(-∞,$\frac{3}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)的定義域為[7,15),設(shè)f(2x+1)的定義域為A,B={x|x<a或x>a+1},若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=log36,a=log510,a=log714,則(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線y=x+b與圓x2+y2-2x+4y-4=0相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則實數(shù)b的值為1或-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a≥0且{y|y=2|x|,-2≤x≤a}=[m,n],記g(a)=n-m,則g(a)=$g(a)=\left\{\begin{array}{l}3,0≤a≤2\\{2^a}-1,a>2\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案