若y=log2(x2-ax-a)在區(qū)間上是減函數(shù),則a的取值范圍是   
【答案】分析:先將原函數(shù)分解為兩個(gè)基本函數(shù),y=log2t,t=x2-ax-a再利用復(fù)合函數(shù)的單調(diào)性求解.
解答:解:令t=x2-ax-a>0  
對(duì)稱軸為x=
y=log2t在(0,+∞)上單調(diào)增,y=log2(x2-ax-a)在區(qū)間上是減函數(shù)
所以t=x2-ax-a在函數(shù)的定義域上為減函數(shù)(同增異減)
所以(-∞,],
所以
解得  ①
又t在真數(shù)位置,故0,即,解得a≤2  ②
由①②得2≥
故答案為2≥
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)的單調(diào)性,要注意兩點(diǎn):一是同增異減,二是定義域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若y=log2(x2-ax-a)在區(qū)間(-∞,1-
3
)
上是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇a,b],其中0<-a<b,則F(x)=f(x)-f(-x)的定義域?yàn)?!--BA-->
 
,若y=log2(x2-2)的值域?yàn)閇1,log214],則其定義域?yàn)?!--BA-->
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若y=-log2(x2-ax-a)在區(qū)間(-∞,1-
3
)
上是增函數(shù),則a的取值范圍是(  )
A、[2-2
3
,2]
B、[2-2
3
,2)
C、(2-2
3
,2]
D、(2-2
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第2章 函數(shù)):2.3 函數(shù)的定義域(解析版) 題型:解答題

已知函數(shù)f(x)的定義域?yàn)閇a,b],其中0<-a<b,則F(x)=f(x)-f(-x)的定義域?yàn)?u>    ,若y=log2(x2-2)的值域?yàn)閇1,log214],則其定義域?yàn)?u>    .

查看答案和解析>>

同步練習(xí)冊(cè)答案