(2012•南京二模)已知變量x,y滿足約束條件
x+y≥2
x-y≤1
y≤2
,則目標(biāo)函數(shù)z=-2x+y的取值范圍是
[-4,2]
[-4,2]
分析:作出不等式組表示的平面區(qū)域;作出目標(biāo)函數(shù)對應(yīng)的直線;結(jié)合圖象知當(dāng)直線過A、B時,z最小、最大,從而得出目標(biāo)函數(shù)z=-2x+y的取值范圍.
解答:解:畫出不等式表示的平面區(qū)域
將目標(biāo)函數(shù)變形為z=-2x+y,作出目標(biāo)函數(shù)對應(yīng)的直線,
直線過B(0,2)時,直線的縱截距最大,z最大,最大值為2;
當(dāng)直線過A(3,2)時,直線的縱截距最小,z最小,最小值為-4;
則目標(biāo)函數(shù)z=-2x+y的取值范圍是[-4,2].
故答案為:[-4,2].
點(diǎn)評:本題考查畫不等式組表示的平面區(qū)域、考查數(shù)形結(jié)合求函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)下列四個命題
①“?x∈R,x2-x+1≤1”的否定;
②“若x2+x-6≥0,則x>2”的否命題;
③在△ABC中,“A>30°“sinA>
12
”的充分不必要條件;
④“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈z)”.
其中真命題的序號是
.(把真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)設(shè)向量
a
=(2,sinθ),
b
=(1,cosθ),θ為銳角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)已知
a+3ii
=b-i
,其中a,b∈R,i為虛數(shù)單位,則a+b=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)在面積為2的△ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),點(diǎn)P在直線EF上,則
PC
PB
+
BC
2
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)一塊邊長為10cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形作側(cè)面,以它們的公共頂點(diǎn)p為頂點(diǎn),加工成一個如圖所示的正四棱錐形容器.當(dāng)x=6cm時,該容器的容積為
48
48
cm3

查看答案和解析>>

同步練習(xí)冊答案