已知,是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),是橢圓上任意一點(diǎn)且直線(xiàn)的斜率分別為,,則的最小值為,則橢圓的離心率為(   ).

 (A)           (B)          (C)          (D)

 

【答案】

C

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C:
x2
a2
+
y2
b2
=1(a>b>0)
橢圓具有性質(zhì):若M,N是橢圓上關(guān)于原點(diǎn)O對(duì)稱(chēng)的兩點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線(xiàn)PM,PN的斜率都存在,并記為kPM,kPN時(shí),那么kPM與kPN之積是與點(diǎn)P的位置無(wú)關(guān)的定值,試寫(xiě)出雙曲線(xiàn)
x2
a2
-
y2
b2
=1
具有類(lèi)似特性的性質(zhì)并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
x2
a2
+
y2
b2
=1(a>b>0)
,M、N是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),P是橢圓上任意一點(diǎn),且直線(xiàn)PM、PN的斜率分別為k1、k2(k1k2≠0),若|k1|+|k2|的最小值為1,則橢圓的離心率為( 。
A、
2
2
B、
2
4
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,M,N是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),P是橢圓上任意一點(diǎn),且直線(xiàn)PM、PN的斜率分別為k1、k2,若|k1k2|=
1
4
,則橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省高三入學(xué)摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線(xiàn)是雙曲線(xiàn)上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),是雙曲線(xiàn)上的動(dòng)點(diǎn),且直線(xiàn)的斜率分別為,若的最小值為1,則雙曲線(xiàn)的離心率為(    )

A.         B.           C.           D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案