14.如圖所示函數(shù)圖象,
(1)求f(x)=Asin(ωx+φ)(ω>0,|φ|<π)的表達(dá)式;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

分析 (1)根據(jù)函數(shù)的圖象,寫出A、T的值,再求出ω、φ的值,即可寫出f(x);
(2)根據(jù)正弦函數(shù)的單調(diào)性,求出函數(shù)f(x)的單調(diào)遞減區(qū)間.

解答 解:(1)根據(jù)函數(shù)的圖象知,
A=2,T=$\frac{7π}{8}$-(-$\frac{π}{8}$)=π,
∴ω=$\frac{2π}{T}$=$\frac{2π}{π}$=2;
又x=-$\frac{π}{8}$時(shí),2×(-$\frac{π}{8}$)+φ=0,解得φ=$\frac{π}{4}$;
∴f(x)=2sin(2x+$\frac{π}{4}$);
(2)令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,
∴$\frac{π}{4}$+2kπ≤2x≤$\frac{5π}{4}$+2kπ,k∈Z,
∴$\frac{π}{8}$+kπ≤x≤$\frac{5π}{8}$+kπ,k∈Z;
∴函數(shù)f(x)的單調(diào)遞減區(qū)間是[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了數(shù)形結(jié)合的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標(biāo)系中,△OAB的三邊所在直線方程分別為$OA:θ=0,OB:θ=\frac{π}{2},AB:ρcos(θ-\frac{π}{3})=\sqrt{3}$,P為△OAB外接圓C上任一點(diǎn),以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸,取相同的單位長度建立直角坐標(biāo)系.
(1)在直角坐標(biāo)系中,求點(diǎn)A、B的坐標(biāo)和圓C的參數(shù)方程;
(2)求|PO|2+|PA|2+|PB|2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列方格紙中每個(gè)正方形的邊長為1,粗線部分是一個(gè)幾何體的三視圖,則該幾何體最長棱的棱長是( 。
A.3B.6C.$2\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,a4=7,則S10=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=$\left\{\begin{array}{l}{cosπx,(x<1)}\\{f(x-1),(x≥1)}\end{array}\right.$,求$f({\frac{1}{3}})+f({\frac{4}{3}})$的值( 。
A.0B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某四棱錐的三視圖如圖所示,俯視圖是一個(gè)等腰直角三角形,則該四棱錐的表面積是(  )
A.2$\sqrt{2}$+2$\sqrt{3}$+2B.3$\sqrt{2}$+2$\sqrt{3}$+3C.2$\sqrt{2}$+$\sqrt{3}$+2D.3$\sqrt{2}$+$\sqrt{3}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.命題“$?{x_0}∈R,使得x_0^2≥0$”的命題的否定為?x∈R,使得x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列可以用來分析身高和體重之間的關(guān)系的是( 。
A.殘差分析B.回歸分析C.等高條形圖D.獨(dú)立性檢驗(yàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知p:實(shí)數(shù)x滿足(x-a)(x-3a)<0,其中a>0;q:實(shí)數(shù)x滿足$\frac{x-3}{x-2}≤0$.
(1)若a=1,且p,q均正確,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案