19.已知集合A={x|x2+5x>0},B={x|-3<x<4},則A∩B等于(  )
A.(-5,0)B.(-3,0)C.(0,4)D.(-5,4)

分析 求出關(guān)于A的解集,從而求出A與B的交集.

解答 解:∵A={x||x2+5x>0}={x|x<-5或x>0},B={x|-3<x<4},
∴A∩B={x|0<x<4},
故選:C.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=|log3x|的圖象與直線l1:y=m從左至右分別交于點(diǎn)A,B,與直線${l_2}:y=\frac{8}{2m+1}(m>0)$從左至右分別交于點(diǎn)C,D.記線段AC和BD在x軸上的投影長(zhǎng)度分別為a,b,則$\frac{a}$的最小值為(  )
A.$81\sqrt{3}$B.$27\sqrt{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示,y=f(x)是可導(dǎo)函數(shù),直線l:y=kx+3是曲線y=f(x)在x=1處的切線,若h(x)=xf(x),則h(x)在x=1處的切線方程為x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},則“x∈A∪B“是“x∈C“的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)拋物線y2=4x的焦點(diǎn)為F,過F且傾斜角為$\frac{π}{4}$的直線交拋物線于A、B兩點(diǎn),則|AB|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(x0,2$\sqrt{2}$)是拋物線C上一點(diǎn),圓M與y軸相切且與線段MF相交于點(diǎn)A,若$\frac{|MA|}{|AF|}$=2,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在區(qū)間[-1,5]上任取一個(gè)實(shí)數(shù)b,則曲線f(x)=x3-2x2+bx在點(diǎn)(1,f(1))處切線的傾斜角為鈍角的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,若方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1,x2,則e${\;}^{{x}_{1}}$•e${\;}^{{x}_{2}}$的最大值為( 。
A.$\frac{1}{{e}^{2}}$B.2(ln2-1)C.$\frac{4}{{e}^{2}}$D.ln2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線C:y2=4x,直線l:x=-1.
(1)若曲線C上存在一點(diǎn)Q,它到l的距離與到坐標(biāo)原點(diǎn)的距離相等,求Q的坐標(biāo);
(2)過直線l上任一點(diǎn)P作拋物線的兩條切線,切點(diǎn)記為A,B,求證:直線AB過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案