已知A={y|y=sinx},x∈R,B={y|y=x2},x∈R,則A∩B=________.

[0,1]
分析:由集合A中的正弦函數(shù)y=sinx,得到值域y的范圍確定出集合A,由集合B中的二次函數(shù)y=x2,得到值域y的范圍確定出集合B,然后求出兩集合的交集即可.
解答:由集合A中的正弦函數(shù)y=sinx,得到y(tǒng)∈[-1,1];
由集合B中的二次函數(shù)y=x2≥0,得到y(tǒng)∈[0,+∞),
在數(shù)軸上畫(huà)出兩集合的解集,如圖所示:

則A∩B=[0,1].
故答案為:[0,1]
點(diǎn)評(píng):此題屬于以函數(shù)的值域?yàn)槠脚_(tái),考查了交集的運(yùn)算.此類(lèi)題往往借助數(shù)軸會(huì)得到意想不到的收獲.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),點(diǎn)P(-1,
2
2
)
在橢圓上,線(xiàn)段PF2與y軸的交點(diǎn)M滿(mǎn)足
PM
=
MF2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)F2作不與x軸重合的直線(xiàn)l,l與圓x2+y2=a2+b2相交于A(yíng)、B并與橢圓相交于C、D,當(dāng)
F1A
F1B
=λ,且λ∈[
2
3
,1]
時(shí),求△F1CD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知S={y|y=2x},T={x|y=lg(x-1)},則S∩T=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
2
x
+6
,其中a為實(shí)常數(shù).
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范圍;
(2)已知a=
3
4
,P1,P2是函數(shù)f(x)圖象上兩點(diǎn),若在點(diǎn)P1,P2處的兩條切線(xiàn)相互平行,求這兩條切線(xiàn)間距離的最大值;
(3)設(shè)定義在區(qū)間D上的函數(shù)y=s(x)在點(diǎn)P(x0,y0)處的切線(xiàn)方程為l:y=t(x),當(dāng)x≠x0時(shí),若
s(x)-t(x)
x-x0
>0
在D上恒成立,則稱(chēng)點(diǎn)P為函數(shù)y=s(x)的“好點(diǎn)”.試問(wèn)函數(shù)g(x)=x2f(x)是否存在“好點(diǎn)”.若存在,請(qǐng)求出所有“好點(diǎn)”坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-1,2)為拋物線(xiàn)C:y=2x2上一點(diǎn),直線(xiàn)l1過(guò)點(diǎn)A,且與拋物線(xiàn)C相切,直線(xiàn)l2:x=a(a≠-1)交拋物線(xiàn)C于B,交l1于D.

(1)求直線(xiàn)l1的方程;(2)設(shè)△ABD的面積為S,求|BD|及S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-1,2)為拋物線(xiàn)C:y=2x2上一點(diǎn),直線(xiàn)l1過(guò)點(diǎn)A,且與拋物線(xiàn)C相切,直線(xiàn)l2:x=a(a≠-1)交拋物線(xiàn)C于B,交l1于D.

(1)求直線(xiàn)l1的方程;(2)設(shè)△ABD的面積為S,求|BD|及S的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案