若函數(shù)f(x)=x2+ax+b有兩個不同的零點x1,x2,且1<x1<x2<3,那么在f(1),f(3)兩個函數(shù)值中(  )
分析:由題意可得f(x)=(x-x1)(x-x2),利用基本不等式可得故f(1)•f(3)<1,由此可得兩個函數(shù)值f(1)、f(3)
中至少有一個小于1.
解答:解:由題意可得函數(shù)f(x)=(x-x1)(x-x2),
∴f(1)=(1-x1)(1-x2)=(x1-1)(x2-1),f(3)=(3-x1)(3-x2),
∴f(1)•f(3)=(x1-1)(x2-1)(3-x1)(3-x2)=(x1-1)(3-x1)(x2-1)(3-x2) 
(
x1 -1+3- x1  
2
)
2
(
x2 -1+3- x2  
2
)
2
=1×1=1,
即 f(1)•f(3)<1.
故f(1),f(3)兩個函數(shù)值中至少有一個小于1,
故選:B.
點評:本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,本題解題的關(guān)鍵是把函數(shù)表示成兩點式,利用基本不等式求出函數(shù)的最值,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+ax-1在x∈[1,3]是單調(diào)遞減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=|x2-4x|-a的零點個數(shù)為3,則a=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
-x2+2x+3
,則f(x)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2•lga-6x+2與X軸有且只有一個公共點,那么實數(shù)a的取值范圍是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟南二模)下列命題:
①若函數(shù)f(x)=x2-2x+3,x∈[-2,0]的最小值為2;
②線性回歸方程對應(yīng)的直線
?
y
=
?
b
x+
?
a
至少經(jīng)過其樣本數(shù)據(jù)點(x1,y1),(x2,y2),…,(xn,yn)中的一個點;
③命題p:?x∈R,使得x2+x+1<0則¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均數(shù)為a,方差為b,則x1+5,x2+5,…,x10+5的平均數(shù)為a+5,方差為b+25.
其中,錯誤命題的個數(shù)為( 。

查看答案和解析>>

同步練習冊答案