【題目】如圖,直三棱柱中,,,.為鄰邊作平行四邊形,連接.

1)求證:平面;

2)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若不存在,請說明理由.

【答案】1)證明見解析;(2)存在,

【解析】

(1)根據(jù)線面平行的判定定理即可證明;

2)先根據(jù)圖形建立空間直角坐標系,設出點的坐標,根據(jù)兩平面垂直得到二面角的平面角為,再分別算出兩平面的法向量,使兩個法向量的夾角的余弦值為0,即可求解.

解:(1

證明:如圖所示:連接,

∵四邊形為平行四邊形,

,

,

,

∴四邊形為平行四邊形,

,

平面,

平面

平面.

(2)假設存在點,使平面與平面垂直,

則平面與平面的二面角為直二面角,

設平面與平面的二面角的平面角為,則,

如圖所示:以為坐標原點,分別以射線,,軸的正方向,建立空間直角坐標系,

,,

,,,,

∵點上,∴設點

,,

分別設平面和平面的法向量為,

,,

,

∴取,,

,

,即,∴

,∴.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形為菱形,,二面角為直二面角,點是棱的中點.

(Ⅰ)求證:;

(Ⅱ)若,當二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加,為了制定提升農民收入、實現(xiàn)2020年脫貧的工作計劃,該地扶貧辦統(tǒng)計了201950位農民的年收入并制成如下頻率分布直方圖:

1)根據(jù)頻率分布直方圖,估計50位農民的平均年收入(單位:千元);(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

2)由頻率分布直方圖,可以認為該貧困地區(qū)農民年收入X服從正態(tài)分布,其中近似為年平均收入近似為樣本方差,經(jīng)計算得=6.92,利用該正態(tài)分布,求:

①在扶貧攻堅工作中,若使該地區(qū)約有占總農民人數(shù)的的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入標準大約為多少千元?

②為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附參考數(shù)據(jù):,若隨機變量X服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,為坐標原點,,,已知是以為底邊,且邊平行于軸的等腰三角形.

1)求動點的軌跡的方程;

2)已知直線軸于點,且與曲線相切于點,點在曲線上,且直線軸,點關于點的對稱點為點,試判斷點、三點是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的四棱錐中,底面為矩形,平面,M,N分別是,的中點.

1)求證:平面;

2)若直線與平面所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有極值,求實數(shù)的取值范圍;

2)當時,若,處導數(shù)相等,證明:;

3)若函數(shù)上有兩個零點,,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費中手機支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學生在暑期社會活動中針對人們生活中的支付方式進行了調查研究. 采用調查問卷的方式對100名18歲以上的成年人進行了研究,發(fā)現(xiàn)共有60人以手機支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.

(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;

(2)某商家為了鼓勵人們使用手機支付,做出以下促銷活動:凡是用手機支付的消費者,商品一律打八折. 已知某商品原價50元,以上述調查的支付方式的頻率作為消費者購買該商品的支付方式的概率,設銷售每件商品的消費者的支付方式都是相互獨立的,求銷售10件該商品的銷售額的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年底,武漢發(fā)生新型冠狀病毒肺炎疫情,國家衛(wèi)健委緊急部署,從多省調派醫(yī)務工作者前去支援,正值農歷春節(jié)舉家團圓之際,他們成為最美逆行者.武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者疑似的新冠肺炎患者無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等四類人員,強化網(wǎng)格化管理,不落一戶不漏一人.若在排查期間,某小區(qū)有5人被確認為確診患者的密切接觸者,現(xiàn)醫(yī)護人員要對這5人隨機進行逐一核糖核酸檢測,只要出現(xiàn)一例陽性,則將該小區(qū)確定為感染高危小區(qū).假設每人被確診的概率均為且相互獨立,若當時,至少檢測了4人該小區(qū)被確定為感染高危小區(qū)的概率取得最大值,則____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列滿足對任意正整數(shù),都存在正整數(shù),使得,則稱數(shù)列具有性質”.已知數(shù)列為無窮數(shù)列.

1)若為等比數(shù)列,且,判斷數(shù)列是否具有性質,并說明理由;

2)若為等差數(shù)列,且公差,求證:數(shù)列不具有性質;

3)若等差數(shù)列具有性質,且,求數(shù)列的通項公式.

查看答案和解析>>

同步練習冊答案