如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外的一點(diǎn),則在四棱錐P-ABCD中,M是PC的中點(diǎn),在DM上取一點(diǎn)G,過G和AP作平面交平面BDM于GH.求證:AP∥GH.
【答案】分析:連接AC,交BD于O,由三角形的中位線的性質(zhì)可得MO∥PA,可得PA∥平面BDM,再由兩個(gè)平面平行的性質(zhì)定理證得
AP∥GH.
解答:證明:連接AC,交BD于O,連接MO.因?yàn)樗倪呅蜛BCD是平行四邊形,
所以 O是AC的中點(diǎn),又因?yàn)镸是PC的中點(diǎn),所以MO∥PA.
又因?yàn)?MO?平面BDM,PA?平面BDM,
所以,PA∥平面BDM.又因?yàn)榻?jīng)過PA與點(diǎn)G的平面交平面BDM于GH,
所以,AP∥GH.
點(diǎn)評(píng):本題考查證明線線平行的方法,兩個(gè)平面平行的性質(zhì)定理的應(yīng)用,證明PA∥平面BDM,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
⊙O于D,∠MDA=45°,則∠DCB=
135°
135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點(diǎn)E,F(xiàn)分別是線段PB,AD的中點(diǎn)
(1)求證:FE∥平面PCD;
(2)求異面直線DE與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點(diǎn),F(xiàn)是PD的中點(diǎn).
(1)求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案