函數(shù)f(x)=x2+ax+b的零點是-1和2,判斷函數(shù)g(x)=ax3+bx+4的零點所在的大致區(qū)間.

思路分析:函數(shù)f(x)的零點就是方程f(x)=0的根,即x2+ax+b=0的根,由根與系數(shù)的關(guān)系可求得a、b的值,從而可求解.

解:∵-1和2是函數(shù)f(x)=x2+ax+b的零點,∴-1+2=-a,-1×2=b,即a=-1,b=-2.

    ∴g(x)=-x3-2x+4.

    ∵g(1)=1,g(2)=-8,g(1)\5g(2)<0,∴g(x)在區(qū)間(1,2)內(nèi)有一個零點.

    又∵g(x)在R上是單增函數(shù),∴g(x)只有一個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),則實數(shù)a的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1x-1
,其圖象在點(0,-1)處的切線為l.
(I)求l的方程;
(II)求與l平行的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,則f(-1)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知函數(shù)f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),則實數(shù)a的取值范圍是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•重慶一模)設(shè)函數(shù)f(x)=-x2+2ax+m,g(x)=
ax

(I)若函數(shù)f(x),g(x)在[1,2]上都是減函數(shù),求實數(shù)a的取值范圍;
(II)當(dāng)a=1時,設(shè)函數(shù)h(x)=f(x)g(x),若h(x)在(0,+∞)內(nèi)的最大值為-4,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案