10.已知兩點(diǎn)M(-5,0)、N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“和諧直線”,給出下列直線:①y=x-1;②y=-$\frac{2}{3}$x;③y=$\frac{5}{3}$x;④y=2x+1.其中為“和諧直線”的是①②.(填全部正確答案的序號(hào))

分析 根據(jù)雙曲線的定義,可得點(diǎn)P的軌跡是以M、N為焦點(diǎn),2a=6的雙曲線,由此算出雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.再分別判斷雙曲線與四條直線的位置關(guān)系,可得只有①②的直線上存在點(diǎn)P滿足“和諧直線”的條件,由此可得答案.

解答 解:∵點(diǎn)M(-5,0),N(5,0),點(diǎn)P使|PM|-|PN|=6,
∴點(diǎn)P的軌跡是以M、N為焦點(diǎn),2a=6的雙曲線
可得b2=c2-a2=52-32=16,雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.
∵雙曲線的漸近線方程為y=±$\frac{4}{3}$x
∴直線y=$\frac{5}{3}$x與雙曲線沒(méi)有公共點(diǎn),直線y=2x+1經(jīng)過(guò)點(diǎn)(0,1)斜率k>$\frac{4}{3}$,與雙曲線也沒(méi)有公共點(diǎn).
而直線①y=x-1、②y=-$\frac{2}{3}$x都與雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1有交點(diǎn)
因此,在①y=x-1、②y=-$\frac{2}{3}$x上存在點(diǎn)P使|PM|-|PN|=6,滿足“和諧直線”的條件.
只有①②正確.
故答案是:①②.

點(diǎn)評(píng) 本題給出“和諧直線”的定義,判斷幾條直線是否為“和諧直線”,著重考查了雙曲線的定義標(biāo)準(zhǔn)方程、直線與雙曲線的位置關(guān)系等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知全集U=R,集合A={x|-1≤x≤3},B={x|x2<4},
(1)求A∪B;         
(2)求集合∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.命題“?x∈R,x2+1<2x”的否定是?x∈R,x2+1≥2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知全集U=R,函數(shù)f(x)=lg(4-x)-$\frac{1}{{\sqrt{x+1}}}$的定義域?yàn)榧螦,集合B={x|-2<x<a}.
(1)求集合∁UA;     
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長(zhǎng)為1的正方形,若∠A1AB=∠A1AD=60°,且A1C=$\sqrt{5}$,則A1A=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求f(x)的最大值;
(Ⅱ)是否存在實(shí)數(shù)a,使得關(guān)于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求證:($\frac{1}{n}$+1)n<e,n∈N*(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=log2(x2-4)的定義域?yàn)椋?∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,是偶函數(shù),且在區(qū)間(0,1)上為增函數(shù)的是( 。
A.y=|x|B.y=1-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在鈍角△ABC中角A,B,C的對(duì)邊分別是a,b,c,若a=2,b=3,則最大邊c的取值范圍是($\sqrt{13}$,5).

查看答案和解析>>

同步練習(xí)冊(cè)答案