19.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x<1)}\\{-2x+3(x≥1)}\end{array}\right.$,則f(f(2))=( 。
A.-7B.2C.-1D.5

分析 由f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x<1)}\\{-2x+3(x≥1)}\end{array}\right.$,將x=2代入可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x<1)}\\{-2x+3(x≥1)}\end{array}\right.$,
∴f(f(2))=f(-1)=2,
故選:B

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=4x2-kx-8在[5,+∞)上是單調(diào)遞增函數(shù),
(1)求實數(shù)k的取值范圍;
(2)當k。1)問中的最大值時,設(shè)g(x)是定義在R上的奇函數(shù),當x>0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l為函數(shù)y=x+b的圖象,曲線C為二次函數(shù)y=(x-1)2+2的圖象,直線l與曲線C交于不同兩點A,B
(Ⅰ)當b=7時,求弦AB的長;
(Ⅱ)求線段AB中點的軌跡方程;
(Ⅲ)試利用拋物線的定義證明:曲線C為拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x|x-a|+2x.
(1)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(2)求所有的實數(shù)a,使得對任意x∈[1,2]時,函數(shù)f(x)的圖象恒在g(x)=2x+1圖象的下方;
(3)若存在a∈[0,4],使得關(guān)于x的方程f(x)=t•f(a)有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+2ax+1.
(1)求f(x)在區(qū)間[-1,2]的最小值g(a);
(2)求f(x)在區(qū)間[-1,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,如果a=2,c=2$\sqrt{3}$,∠A=30°,那么△ABC的面積等于2$\sqrt{3}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個盒子中裝有標號為1,2,3,4的4個球,同時選取兩個球,則兩個球上的數(shù)字為相鄰整數(shù)的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.三棱錐P-ABC中,
(1)若點P到AB,BC,CA的距離相等,那么點P在底面內(nèi)的射影是△ABC的內(nèi)心或旁心;
(2)若兩組對棱互相垂直,那么點P在底面內(nèi)的射影是△ABC的垂心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且a${\;}_{n}^{2}+{a}_{n}$=2Sn
(1)求數(shù)列{an}的通項;
(2)若bn=$\frac{1}{{a}_{n}^{2}}$(n∈N+),Tn=b1+b2+…+bn,求證:Tn$<\frac{5}{3}$.

查看答案和解析>>

同步練習(xí)冊答案