(1)試舉出一直線與一平面相互垂直的例子(不少于4例);
(2)若一直線與一平面相互垂直,我們就說這條直線與這個(gè)平面構(gòu)成了一個(gè)“垂直關(guān)系組”,兩個(gè)“垂直關(guān)系組”當(dāng)且僅當(dāng)其中兩條直線和兩個(gè)平面不全同一時(shí)稱為相異的(或不同的).試求與正方體的棱相關(guān)的“垂直關(guān)系組”的個(gè)數(shù).
【探究】 在正方體中,所有的棱都和與它相交的面垂直,利用中點(diǎn)也可產(chǎn)生與棱垂直的面.
(1)例如AB⊥平面BCKJ〔如圖(1)〕;
例如EF⊥平面MPON〔如圖(1)〕;
例如NF⊥平面ADKJ〔如圖(2)〕;
例如IC⊥平面AJL〔如圖(3)〕.
(2)正方體的棱有12條,而每一條棱都與3個(gè)平面垂直,如圖(1)中棱IJ與平面ID、平面NP及平面JC都垂直,所以與正方體的棱相關(guān)的“垂直關(guān)系組”的個(gè)數(shù)是12×3=36.
【規(guī)律總結(jié)】 挖掘正方體本身潛藏的特征,將每一條棱的情況分析清楚,做到不重不漏.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:設(shè)計(jì)必修二數(shù)學(xué)人教A版 人教A版 題型:044
如圖,正方體有8個(gè)頂點(diǎn)和12條棱,每條棱上均有一個(gè)中點(diǎn),于是有棱的中點(diǎn)12個(gè),頂點(diǎn)與中點(diǎn)合起來共有20個(gè)[圖(1)].過其中的兩點(diǎn)可作一條直線;過其中不在同一直線上的三點(diǎn)可作一個(gè)平面.現(xiàn)在考慮這些直線與平面的垂直關(guān)系.
(1)試舉出一直線與一平面相互垂直的例子(不少于4例).
(2)若一直線與一平面相互垂直,我們就說這條直線與這個(gè)平面構(gòu)成了一個(gè)“垂直關(guān)系組”,兩個(gè)“垂直關(guān)系組”當(dāng)且僅當(dāng)其中兩條直線和兩個(gè)平面不全同一時(shí)稱為相異的(或不同的).試求與正方體的棱相關(guān)的“垂直關(guān)系組”的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)試舉出一直線與一平面相互垂直的例子(不少于4例);
(2)若一直線與一平面相互垂直,我們就說這條直線與這個(gè)平面構(gòu)成了一個(gè)“垂直關(guān)系組”,兩個(gè)“垂直關(guān)系組”當(dāng)且僅當(dāng)其中兩條直線和兩個(gè)平面不全同一時(shí)稱為相異的(或不同的).試求與正方體的棱相關(guān)的“垂直關(guān)系組”的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)試舉出一直線與一平面相互垂直的例子(不少于4例);
(2)若一直線與一平面相互垂直,我們就說這條直線與這個(gè)平面構(gòu)成了一個(gè)“垂直關(guān)系組”,兩個(gè)“垂直關(guān)系組”當(dāng)且僅當(dāng)其中兩條直線和兩個(gè)平面不全同一時(shí)稱為相異的(或不同的).試求與正方體的棱相關(guān)的“垂直關(guān)系組”的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)試舉出一直線與一平面相互垂直的例子(不少于4例);
(2)若一直線與一平面相互垂直,我們就說這條直線與這個(gè)平面構(gòu)成了一個(gè)“垂直關(guān)系組”,兩個(gè)“垂直關(guān)系組”當(dāng)且僅當(dāng)其中兩條直線和兩個(gè)平面不全同一時(shí)稱為相異的(或不同的).試求與正方體的棱相關(guān)的“垂直關(guān)系組”的個(gè)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com