精英家教網 > 高中數學 > 題目詳情
數列{an}的通項公式,其前n項和為Sn,則S100=   
【答案】分析:由題意可得,s100=(12+0-32+0)+(52+0-72+0)+…+(972+0-992+0),利用平方 差公式及等差數列的求和公式即可求解
解答:解:由題意可得,s100=(12+0-32+0)+(52+0-72+0)+…+(972+0-992+0)
=-2(4+12+20+…+196)
==-5000
故答案為:-5000
點評:本題主要考查了等差數列的求和公式的應用,解題的關鍵是正弦函數的周期性規(guī)律的應用
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

數列{an}的前n項和Sn=2n2+n-1,則數列{an}的通項公為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,Sn是數列{an}的前n項和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數列{an}的通項公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}中,a1=1,Sn是數列{an}的前n項和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數列{an}的通項公an
(2)若記數學公式,Tn為數列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

數列{an}的前n項和Sn=2n2+n-1,則數列{an}的通項公為______.

查看答案和解析>>

科目:高中數學 來源:2002-2003學年北京市朝陽區(qū)高一(上)期末數學試卷(解析版) 題型:填空題

數列{an}的前n項和Sn=2n2+n-1,則數列{an}的通項公為   

查看答案和解析>>

同步練習冊答案