如圖所示,在△ABC,已知,AC邊上的中線,求:
(1)BC的長度;
(2)sinA的值.
【答案】分析:(1)取BC的中點(diǎn)E,則DE 是三角形ABC的中位線,∠DEB=π-B,△BDE中,由余弦定理可得BD2=ED2+EB2-2ED•EB cos(π-B),解出 BE,即可得到 BC 的值.
(2)在△ABC中,由余弦定理可求得AC的值,由正弦定理求得sinA的值.
解答:解:(1)取BC的中點(diǎn)E,由于D是AC的中點(diǎn),∴DE 是三角形ABC的中位線,故 DE=
且∠DEB=π-B,△BDE中,由余弦定理可得 BD2=ED2+EB2-2ED•EB cos(π-B),
∴5=+BE2+2•BE,解得 BE=1,∴BC=2.
(2)在△ABC中,由余弦定理可得 AC2=AB2+BC2-2AB•BCcosB=
∴AC=. 由  可得 sinA=
點(diǎn)評:本題考查正弦定理,余弦定理的應(yīng)用,誘導(dǎo)公式,求出AC的長度,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC,已知AB=
4
6
3
cosB=
6
6
,AC邊上的中線BD=
5
,求:
(1)BC的長度;
(2)sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,點(diǎn)D是邊AB的中點(diǎn),則向量
DC
=( 。
A、
1
2
BA
+
BC
B、
1
2
BA
-
BC
C、-
1
2
BA
-
BC
D、-
1
2
BA
+
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點(diǎn)M,則BM<1的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠BAC=90°,∠ABC=60°,AD⊥BC于D,則
AD
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點(diǎn)M,求BM<1的概率.

查看答案和解析>>

同步練習(xí)冊答案