如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面ADD1A1⊥底面ABCD,D1A=D1D=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).

(Ⅰ)求證:A1O∥平面AB1C;

(Ⅱ)求銳二面角A-C1D1-C的余弦值.

答案:
解析:

  (Ⅰ)證明:如圖,連接, 1分

  則四邊形為正方形, 2分

  ,且

  故四邊形為平行四邊形, 3分

  , 4分

  又平面,平面 5分

  平面 6分

  (Ⅱ)的中點(diǎn),,又側(cè)面⊥底面,故⊥底面, 7分

  以為原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示的坐標(biāo)系,則

  , 8分

  

  , 9分

  設(shè)為平面的一個(gè)法向量,由,得,

  令,則 10分

  又設(shè)為平面的一個(gè)法向量,由,得,令

  ,則, 11分

  則,故所求銳二面角A-C1D1-C的余弦值為 12分

  注:第2問用幾何法做的酌情給分.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2,四棱錐B-AA1C1D的體積為3.
(1)求證:AB1∥平面BC1D;
(2)求直線A1C1與平面BDC1所成角的正弦值;
(3)求二面角C-BC1-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)E是棱C1C上一點(diǎn).
(1)求證:無論E在任何位置,都有A1E⊥BD
(2)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說明理由.
(3)當(dāng)E為CC1中點(diǎn)時(shí),求四面體A1-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)E是棱C1C上一點(diǎn).
(1)求證:無論E在任何位置,都有A1E⊥BD
(2)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說明理由.
(3)試確定點(diǎn)E的位置,使得四面體A1-BDE體積最大.并求出體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省仁壽一中2012屆高三12月月考數(shù)學(xué)理科試題 題型:044

如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)F是棱C1D1的中點(diǎn).

(1)若點(diǎn)E是棱CC1的中點(diǎn),求證:EF∥平面A1BD;

(2)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省仁壽一中2012屆高三12月月考數(shù)學(xué)文科試題 題型:044

如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)F是棱C1D1的中點(diǎn).

(1)若點(diǎn)E是棱CC1的中點(diǎn),求證:EF∥平面A1BD;

(2)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案