分析:(I)仿寫一個等式,兩式相減,得到數(shù)列的項的遞推關(guān)系,據(jù)此遞推關(guān)系,判斷出數(shù)列是等差數(shù)列,利用等差數(shù)列的通項公式求出通項.
(II)將數(shù)列的通項裂成兩項的差,通過和眾的項相互抵消,求出數(shù)列的前n項和.
解答:解:(Ⅰ)由
2=an+1,n=1代入得a
1=1,
兩邊平方得4S
n=(a
n+1)
2(1),
(1)式中n用n-1代入得
4Sn-1=(an-1+1)2(2),
(1)-(2),得4a
n=(a
n+1)
2-(a
n-1+1)
2,0=(a
n-1)
2-(a
n-1+1)
2,(3分)
[(a
n-1)+(a
n-1+1)]•[(a
n-1)-(a
n-1+1)]=0,
由正數(shù)數(shù)列{a
n},得a
n-a
n-1=2,
所以數(shù)列{a
n}是以1為首項,2為公差的等差數(shù)列,有a
n=2n-1.(7分)
(Ⅱ)
bn===(-),
裂項相消得
Bn=.(14分)
點評:若知數(shù)列的和與項的遞推關(guān)系求通項,常采用仿寫的方法;求數(shù)列的前n項和,一般先判斷通項的特點,然后采用合適的求和方法.