設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù) 的最小值為.
(1)求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值.
(1) (2) 最大值是,最小值是.
【解析】
試題分析:(1)利用函數(shù)為奇函數(shù),建立恒等式⋯①,切線與已知直線垂直得 ⋯②導(dǎo)函數(shù)的最小值得 ⋯③.解得 的值;
(2)通過導(dǎo)函數(shù)求單調(diào)區(qū)間及最大值,最小值.
試題解析:(1)因為為奇函數(shù),
所以即,所以 , 2分
因為的最小值為,所以, 4分
又直線的斜率為,
因此,,
∴. 6分
(2)單調(diào)遞增區(qū)間是和. 9分
在上的最大值是,最小值是. 12分
考點:奇函數(shù)的性質(zhì),求函數(shù)的導(dǎo)數(shù),及通過導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間及最值.
科目:高中數(shù)學(xué) 來源: 題型:
(07年四川卷文)(12分)設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.
(Ⅰ)求,,的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線 平行,導(dǎo)函數(shù)的最小值為
(Ⅰ)求,,的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,且在x=-1處取得極值.
(Ⅰ)求a,,的值;
(Ⅱ)求函數(shù)在上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北仙桃毛嘴高中高二上學(xué)業(yè)水平監(jiān)測理數(shù)學(xué)試卷(解析版) 題型:解答題
本題滿分10分)
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.試求,,的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣西武鳴高中高二下學(xué)期段考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.
(Ⅰ)求,,的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com