某校開(kāi)設(shè)8門校本課程,其中4門課程為人文科學(xué),4門為自然科學(xué),學(xué)校要求學(xué)生    在高中三年內(nèi)從中選修3門課程,假設(shè)學(xué)生選修每門課程的機(jī)會(huì)均等.
(1)求某同學(xué)至少選修1門自然科學(xué)課程的概率;
(2)已知某同學(xué)所選修的3門課程中有1門人文科學(xué),2門自然科學(xué),若該同學(xué)通過(guò)人文科學(xué)課程的概率都是
4
5
,自然科學(xué)課程的概率都是
3
4
,且各門課程通過(guò)與否相互獨(dú)立.用ξ表示該同學(xué)所選的3門課程通過(guò)的門數(shù),求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(1)記“某同學(xué)至少選修1門自然科學(xué)課程”為事件A,由對(duì)立事件概率計(jì)算公式能求出該同學(xué)至少選修1門自然科學(xué)課程的概率.
(2)隨機(jī)變量ξ的所有可能取值有0,1,2,3,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.
解答: 解:(1)記“某同學(xué)至少選修1門自然科學(xué)課程”為事件A,
P(A)=1-
C
3
4
C
3
8
=1-
1
14
=
13
14
,…(2分)
所以該同學(xué)至少選修1門自然科學(xué)課程的概率為
13
14
.…(3分)
(2)隨機(jī)變量ξ的所有可能取值有0,1,2,3.…(4分)
因?yàn)?span id="c51y5id" class="MathJye">P(ξ=0)=
1
5
×(
1
4
)2=
1
80
,P(ξ=1)=
4
5
×(
1
4
)2+
1
5
×
C
1
2
×
1
4
×
3
4
=
1
8
,P(ξ=2)=
4
5
×
C
1
2
×
1
4
×
3
4
+
1
5
×(
3
4
)2=
33
80
,P(ζ=3)=
4
5
×(
3
4
)2=
9
20
,…(8分)
所以ξ的分布列為
ξ0123
P
1
80
1
8
33
80
9
20
所以E(ξ)=0×
1
80
+1×
10
80
+2×
33
80
+3×
36
80
=2.3
.…(10分)
點(diǎn)評(píng):本題主要考查概率、隨機(jī)變量分布列以及數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查運(yùn)用概率統(tǒng)計(jì)知識(shí)解決簡(jiǎn)單實(shí)際問(wèn)題的能力,考查數(shù)據(jù)處理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對(duì)應(yīng)值:
x123456
f(x)1210-24-5-10
函數(shù)f(x)在區(qū)間[1,6]上的零點(diǎn)至少有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2-2ax+1=0的兩根分別在(0,1)與(1,2)內(nèi),則實(shí)數(shù)a的取值范圍為( 。
A、1<a<
5
4
B、a<-1或a>1
C、-1<a<1
D、-
5
4
<a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|2x-a|+2a.
(1)若不等式f(x)≤6解集為{x|-6≤x≤4},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若不等式f(x)≤kx-5的解集非空,求實(shí)數(shù)k取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形兩邊之差為2,夾角的正弦值為
3
5
,面積為
9
2
,那么這個(gè)三角形的兩邊長(zhǎng)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①函數(shù)y=sinx和y=tanx在第一象限都是增函數(shù);
②若函數(shù)f(x)在[a,b]上滿足f(a)f(b)<0,函數(shù)f(x)在(a,b)上至少有一個(gè)零點(diǎn);
③數(shù)列{an}為等差數(shù)列,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,S10>0,S11<0,Sn最大值為S5;
④在△ABC中,A>B的充要條件是cos2A<cos2B;
⑤在線性回歸分析中,線性相關(guān)系數(shù)越大,說(shuō)明兩個(gè)量線性相關(guān)性就越強(qiáng).
其中正確命題的序號(hào)是
 
(把所有正確命題的序號(hào)都寫(xiě)上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)當(dāng)x∈(-∞,0)時(shí),f(x)=-2x+3,則f(1)與f(2)的大小關(guān)系為( 。
A、f(1)<f(2)
B、f(1)=f(2)
C、f(1)>f(2)
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
log
1
2
(2-x)
的定義域?yàn)?div id="yqstbw0" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x≥0
y≥x
4x+3y≤12
,則目標(biāo)函數(shù)z=y-
5
2
x的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案