已知拋物線y2=4x,焦點(diǎn)為F,△ABC三個(gè)頂點(diǎn)均在拋物線上,若
FA
+
FB
+
FC
=
0
,則|FA|+|FB|+|FC|=
6
6
分析:根據(jù)
FA
+
FB
+
FC
=
0
,可判斷點(diǎn)F是△ABC重心,進(jìn)而可求x1+x2+x3的值,再根據(jù)拋物線的定義,即可求得答案.
解答:解:拋物線焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線方程:x=-1
設(shè)A(x1,y1),B(x2,y2),C(x3,y3
FA
+
FB
+
FC
=
0
,
∴點(diǎn)F是△ABC重心,
∴x1+x2+x3=3,
∵|FA|=x1-(-1)=x1+1,|FB|=x2-(-1)=x2+1,|FC|=x3-(-1)=x3+1
∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6
故答案為:6
點(diǎn)評(píng):本題重點(diǎn)考查拋物線的簡單性質(zhì),考查向量知識(shí)的運(yùn)用,解題的關(guān)鍵是判斷出F點(diǎn)為三角形的重心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸交于點(diǎn)M,過M作斜率為k的直線與拋物線交于A、B兩點(diǎn),弦AB的中點(diǎn)為P,AB的垂直平分線與x軸交于點(diǎn)E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點(diǎn)為F,過點(diǎn)A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)P(m,n)在拋物線上移動(dòng),Q是OP的中點(diǎn),M是FQ的中點(diǎn).
(1)求點(diǎn)M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點(diǎn),拋物線的焦點(diǎn)為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,其焦點(diǎn)為F,P是拋物線上一點(diǎn),定點(diǎn)A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習(xí)冊答案