天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
 
 
乙班
 
30
 
    合計(jì)
 
 
110
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:。

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 

(1)

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
50
60
乙班
20
30
50
合計(jì)
30
80
110
 
(2)計(jì)算得到K2= ≈7.487<10.828.因此按99.9%的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
(3)抽到9號(hào)或10號(hào)的概率為

解析試題分析:
思路分析:此類(lèi)問(wèn)題(1)(2)直接套用公式,經(jīng)過(guò)計(jì)算“卡方”,與數(shù)表對(duì)比,作出結(jié)論。(3)是典型的古典概型概率的計(jì)算問(wèn)題,確定兩個(gè)“事件”數(shù),確定其比值。
解:(1)               4分

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
50
60
乙班
20
30
50
合計(jì)
30
80
110
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2= ≈7.487<10.828.因此按99.9%的
可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”           8分
(3)設(shè)“抽到9或10號(hào)”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36個(gè).事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7個(gè).所以P(A)= ,即抽到9號(hào)或10號(hào)的概率為.      12分
考點(diǎn):“卡方檢驗(yàn)”,古典概型概率的計(jì)算。
點(diǎn)評(píng):中檔題,獨(dú)立性檢驗(yàn)問(wèn)題,主要是通過(guò)計(jì)算“卡方”,對(duì)比數(shù)表,得出結(jié)論。古典概型概率的計(jì)算中,常用“樹(shù)圖法”或“坐標(biāo)法”確定事件數(shù),以防重復(fù)或遺漏。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在一次數(shù)學(xué)統(tǒng)考后,某班隨機(jī)抽取10名同學(xué)的成績(jī)進(jìn)行樣本分析,獲得成績(jī)數(shù)據(jù)的莖葉圖如下.

(Ⅰ)計(jì)算樣本的平均成績(jī)及方差;
(Ⅱ)現(xiàn)從80分以上的樣本中隨機(jī)抽出2名學(xué)生,求抽出的2名學(xué)生的成績(jī)分別在上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)生社團(tuán)在對(duì)本校學(xué)生學(xué)習(xí)方法開(kāi)展問(wèn)卷調(diào)查的過(guò)程中發(fā)現(xiàn),在回收上來(lái)的1000份有效問(wèn)卷中,同學(xué)們背英語(yǔ)單詞的時(shí)間安排共有兩種:白天背和晚上睡前背。為了研究背單詞時(shí)間安排對(duì)記憶效果的影響,該社團(tuán)以5%的比例對(duì)這1000名學(xué)生按時(shí)間安排類(lèi)型進(jìn)行分層抽樣,并完成一項(xiàng)實(shí)驗(yàn).實(shí)驗(yàn)方法是,使兩組學(xué)生記憶40個(gè)無(wú)意義音節(jié)(如XIQ、GEH),均要求在剛能全部記清時(shí)就停止識(shí)記,并在8小時(shí)后進(jìn)行記憶檢測(cè)。不同的是,甲組同學(xué)識(shí)記結(jié)束后一直不睡覺(jué),8小時(shí)后測(cè)驗(yàn);乙組同學(xué)識(shí)記停止后立刻睡覺(jué),8小時(shí)后叫醒測(cè)驗(yàn).
兩組同學(xué)識(shí)記停止8小時(shí)后的準(zhǔn)確回憶(保持)情況如圖(區(qū)間含左端點(diǎn)而不含右端點(diǎn)).

(1)估計(jì)這1000名被調(diào)查學(xué)生中停止后8小時(shí)40個(gè)音節(jié)的保持率不小于60%的人數(shù);
(2)從乙組準(zhǔn)確回憶單詞個(gè)數(shù)在個(gè)范圍內(nèi)的學(xué)生中隨機(jī)選2人,求能準(zhǔn)確回憶個(gè)單詞至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下表是某單位在2013年1—5月份用水量(單位:百噸)的一組數(shù)據(jù):

月份
1
2
3
4
5
用水量
4 5
4
3
2 5
1 8
 
(Ⅰ)若由線性回歸方程得到的預(yù)測(cè)數(shù)據(jù)與實(shí)際檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0 05,視為“預(yù)測(cè)可靠”,通過(guò)公式得,那么由該單位前4個(gè)月的數(shù)據(jù)中所得到的線性回歸方程預(yù)測(cè)5月份的用水量是否可靠?說(shuō)明理由;
(Ⅱ)從這5個(gè)月中任取2個(gè)月的用水量,求所取2個(gè)月的用水量之和小于7(單位:百噸)的概率
參考公式:回歸直線方程是:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2012年第三季度,國(guó)家電網(wǎng)決定對(duì)城鎮(zhèn)居民民用電計(jì)費(fèi)標(biāo)準(zhǔn)做出調(diào)整,并根據(jù)用電情況將居民分為三類(lèi): 第一類(lèi)的用電區(qū)間在,第二類(lèi)在,第三類(lèi)在(單位:千瓦時(shí)). 某小區(qū)共有1000戶居民,現(xiàn)對(duì)他們的用電情況進(jìn)行調(diào)查,得到頻率分布直方圖如圖所示.
⑴ 求該小區(qū)居民用電量的中位數(shù)與平均數(shù);
⑵ 本月份該小區(qū)沒(méi)有第三類(lèi)的用電戶出現(xiàn),為鼓勵(lì)居民節(jié)約用電,供電部門(mén)決定:對(duì)第一類(lèi)每戶獎(jiǎng)勵(lì)20元錢(qián),第二類(lèi)每戶獎(jiǎng)勵(lì)5元錢(qián),求每戶居民獲得獎(jiǎng)勵(lì)的平均值;
⑶ 利用分層抽樣的方法從該小區(qū)內(nèi)選出5戶居民代表,若從該5戶居民代表中任選兩戶居民,求這兩戶居民用電資費(fèi)屬于不同類(lèi)型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了研究玉米品種對(duì)產(chǎn)量的影響,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000 株的生長(zhǎng)情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計(jì)結(jié)果如下:

 
高莖
矮莖
合計(jì)
圓粒
11
19
30
皺粒
13
7
20
合計(jì)
24
26
50
 (1) 現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再?gòu)倪@6株玉米中隨機(jī)選出2株,求這2株之中既有高莖玉米又有矮莖玉米的概率;
(2) 根據(jù)對(duì)玉米生長(zhǎng)情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過(guò)0.050的前提下認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?(下面的臨界值表和公式可供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

PM2. 5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱(chēng)為可入肺顆粒物。我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).
某試點(diǎn)城市環(huán)保局從該市市區(qū)2011年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)的抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉)

(1)從這15天的PM2.5日均監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽出三天,求恰有一天空氣質(zhì)量達(dá)到一級(jí)的概率;
(2)從這15天的數(shù)據(jù)中任取三天數(shù)據(jù),記表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求的分布列;
(3)以這15天的PM2.5日均值來(lái)估計(jì)一年的空氣質(zhì)量情況,則一年(按360天計(jì)算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從某學(xué)校的名男生中隨機(jī)抽取名測(cè)量身高,被測(cè)學(xué)生身高全部介于cm和cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[,),第二組[,),…,第八組[,],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人.
(Ⅰ)求第七組的頻率;

(Ⅱ)估計(jì)該校的名男生的身高的中位數(shù)以及身高在cm以上(含cm)的人數(shù);
(Ⅲ)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,事件{},事件{},求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(t)與相應(yīng)的生產(chǎn)能耗y(t標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).

x
 
3
 
4
 
5
 
6
 
y
 
2.5
 
3
 
4
 
4.5
 
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)已知該廠技術(shù)改造前100t甲產(chǎn)品的生產(chǎn)能耗為90t標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程預(yù)測(cè)生產(chǎn)100t甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

查看答案和解析>>

同步練習(xí)冊(cè)答案