在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AB和CC1的中點,則線段EF被正方體的內(nèi)切球球面截在球內(nèi)的線段長為
 
分析:先畫出圖形,確定過EF和球心的截面的位置,利用三角形相似關系,求出球心到EF的距離,然后解出線段EF被正方體的內(nèi)切球球面截在球內(nèi)的線段長.
解答:精英家教網(wǎng)解:由題意畫出圖形:
則過EF和球心的截面,G為側(cè)棱棱AA1的中點,
易證EF⊥GE,GE=
2

則O到線段EF的距離為
2
2
,又球的半徑為1,
所以:線段EF被正方體的內(nèi)切球球面截在球內(nèi)的線段長為
2
2
=
2

故答案為:
2
點評:本題考查正方體的內(nèi)接球問題,考查空間想象能力,邏輯思維能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在棱長為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點,那么異面直線OE和FD1所成的角的余弦值等于(  )
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為2的正方體AC1中,G是AA1的中點,則BD到平面GB1D1的距離是(  )
A、
6
3
B、
2
6
3
C、
2
3
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)如圖,在棱長為1的正方體A'C中,過BD及B'C'的中點E作截面BEFD交C'D'于F.
(1)求截面BEFD與底面ABCD所成銳二面角的大。
(2)求四棱錐A'-BEFD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•上海)如圖,在棱長為2的正方體ABCD-A'B'C'D'中,E,F(xiàn)分別是A'B'和AB的中點,求異面直線A'F與CE所成角的大小 (結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省鶴崗一中2010-2011學年高一下學期期末考試數(shù)學理科試題 題型:013

在棱長為2的正方體A中,點E,F(xiàn)分別是棱AB,BC的中點,則點到平面EF的距離是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習冊答案