函數(shù)f(x)=3sin2x+cosx的最小值是
 
考點(diǎn):三角函數(shù)的最值
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的圖像與性質(zhì)
分析:將解析式利用平方關(guān)系變形為關(guān)于cosx的二次函數(shù),配方后,利用余弦函數(shù)的有界性以及二次函數(shù)性質(zhì)解答.
解答: 解:f(x)=3sin2x+cosx=-3cos2x+cosx+3=-3(cosx-
1
6
2+
1
12

∵cosx∈[-1,1],
∴cosx=-1時(shí),f(x)最小為-3-1+3=-1;
故答案為:-1.
點(diǎn)評(píng):本題考查了三角函數(shù)的平方關(guān)系、有界性以及二次函數(shù)的最值的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x,且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線y=x對(duì)稱,則函數(shù)g(x2)是( 。
A、奇函數(shù)且在(0,+∞)上是減函數(shù)
B、偶函數(shù)且在(0,+∞)上是增函數(shù)
C、奇函數(shù)且在(-∞,0)上是減函數(shù)
D、偶函數(shù)且在(-∞,0)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為:[0,20),[20,40),[40,60)[60,820),[80,100],則
(1)圖中的x=
 

(2)若上學(xué)所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,則該校600名新生中估計(jì)
 
 名學(xué)生可以申請(qǐng)住宿.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P(-4,3)是角α終邊上的一點(diǎn),則
sin(4π-α)cos(α-3π)+tan(α-4π)
sin(π-α)cos(4π-α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x、y∈R,都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0.
(1)試判斷函數(shù)的奇偶性;
(2)試判斷該函數(shù)在R上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
1
2
x2
+bx+1在[-1,+∞)上是減函數(shù),則b的取值范圍是( 。
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),則代數(shù)式
27-12a+2a2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3
x3+x函數(shù),則不等式f(2-x2)+f(2x+1)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A、B的坐標(biāo)分別為(2,0)和(-2,0),若三角形的周長(zhǎng)為10,則頂點(diǎn)C的軌跡方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案